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1 Introduction

This paper examines the relationship between gross domestic product (GDP) and
consumer confidence (CC) by applying Granger causality to determine to the causal
direction, so it can be established whether GDP induces changes in CC or the reverse.
We use a vector autoregressive (VAR) model to analyze the connection between the
two economic variables. By using a general-to-specific (GETS) method a VAR(7)-
model is chosen. It is determined that CC Granger causes GDP, where both a short-
run and long-run effect are determined.

2 Description of data

This paper uses data from Germany and examines the relationship between the GDP
and CC. The data has been downloaded from FRED database maintained by the
Federal Reserve Bank of St. Louis.
We define the variables:

• yt = log(GDPt) and ∆yt = yt − yt−1, where ∆yt is the first difference of the
logarithm of GDP for Germany in millions of chained 2010 Euros and seasonally
adjusted.

• ct = log(CCt) and ∆ct = ct − ct−1, where ∆ct is the first difference of the
logarithm of composite consumer confidence indicator (Normal=100)

The second graph in figure 1 shows the logarithm of GDP and CC. Neither GDP
nor CC seems to be stationary, so we proceed using first difference of the logarithm.
This transformation appears to be stationary, but the years 2020 and 2021 are rather
large outliers and we choose not to include them, to minimize possible normality
problems. Therefore, we end up with a sample from 1991 (1) to 2019 (4).

To determine the amount of lags we wish to include in the model, we could use
a Box-Jenkins identification method and look at the partial autocorrelation function
(PACF). The PACF of ∆yt have the significant lags 1, 2, 3, 6 and 7. However, due to
the VAR-model containing simultaneous equations the PACF is not too significant.
This could indicate that we should include at least 7 lags when specifying our model.

3 Econometric theory

3.1 The model

We consider a vector autoregressive model of order k given as, VAR(k)-model, since
we want to examine the dynamic relationship between two variables. We only look at
GDP and CC which means we will use the two dimensional vector Zt = (∆yt,∆ct)
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Figure 1: Log GDP/CC, first difference, ACF and PACF
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The VAR(k)-model is stable if the eigenvalues of the companion matrix are inside

the unit circle, which means Zt is stationary and weakly dependent The companion
matrix is given as: 

Π1 Π2 Π3 · · · Πk

Ip 0 0 · · · 0
0 Ip 0 · · · 0
...

. . .
...

0 · · · 0 Ip 0


We use the Maximum Likelihood Estimator (MLE), which is given by:

θ̂(Z1, Z2, ..., ZT ) = arg max
θ
L(θ|Z1, Z1, ..., ZT )

OLS will be identical to MLE, when we have Gaussian error terms. We normally
assume normality of errors, but this will not be the case when estimating our model. If
we want to use MLE, then we must assume normality of errors, so we must instead use
the Quasi Maximum Likelihood Estimator (QMLE). The QMLE is not efficient, but
it is still consistent and asymptotically normal distributed, as long as the likelihood
function is only approximately correct1.

1Nielsen 2021 - Theorem 3.2
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There is no directly contemporaneous effect in the model, but if there are any
causality between the variables, it will be reflected by the error covariance Ω12 in the
covariance matrix. But we remember that ε1t and ε2t can be correlated:

Et−1

((
ε1t
ε2t

)(
ε1t ε2t

))
=

(
Ω11 Ω12

Ω21 Ω22

)
= Ω

Where Ω12 = Ω21 by symmetry and Et−1(·) = E(·|It−1) denotes the conditional
expectation.

3.2 Granger causality

As the VAR-model does not determine the causal direction, we use the Granger
causality test to examine if the lagged values of ∆ct in our VAR-model help to predict
the second variable ∆yt. ∆ct is said to Granger cause ∆yt if the lagged values of ∆ct
are statistically significant in the equation explaining ∆yt. We test the following
null-hypothesis of no-Granger causality with a LR-test:

∆ct 6=⇒ ∆yt : Π1
12 = Π2

12 = ... = Πk
12 = 0

And we can test that ∆yt does not Granger cause ∆ct by the hypothesis:

∆yt 6=⇒ ∆ct : Π1
21 = Π2

21 = ... = Πk
21 = 0

If we reject our first null-hypothesis we say that ∆ct Granger causes ∆yt. If we reject
our second null-hypothesis we say that ∆yt Granger causes ∆ct.

3.3 Test for misspecification

We test our model for misspecification by testing for autocorrelation, normality and
heteroskedasticity problems, to secure a consistent and unbiased model.

Figure 2: Misspecification tests where k is the number of restrictions

When specifying the model, we use the Akaike Information Criterion (AIC) given
by:

AIC = log σ̂2 +
2 ∗ k
T

A model is less misspecified the lower the AIC.
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3.4 Impulse responses

The moving average representation is given by:

Zt = εt + C1εt−1 + C2εt−2 + ...+ Ct−1ε1 + C0

We have that ε is the error term of the reduced form VAR model. It is clear that the
impulse responses are just the moving average coefficients. Due to the stationarity
condition, the impulse responses will only have a short term effect.

∂Zt
∂ε′t

= Ip,
∂Zt+1

∂ε′t
= C1,

∂Zt+2

∂ε′t
= C2, ...

4 Empirical analysis

4.1 Model selection

To determine the number of lags to include, we use a GETS approach starting from 10
lags, and we reduce the number one by one until the last lag is statistical significant.
By using the AIC, we end up with a VAR(7) model. We test the model further
against lag 1 to 6, and we conclude that we cannot remove any more lags. We end
up with the final model with the sample 1993(1) to 2019(4):

(
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)
=
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The brackets indicate the P-value. As seen in figure 3, the error terms are not

normally distributed, so we end up using the QMLE. The model does not suffer from
auto-correlation and heteroskedasticity problems:

To test for stationarity, we calculate the unit roots. We see in figure 4 that the
roots of the companion matrix are within the unit circle and the eigenvalues are below
1 in absolute value. We conclude that the model is stationary.
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Figure 3: Test results

Figure 4: Companion matrix with roots and eigenvalues

4.2 Test for Granger Causality

We consider the Granger causality effect between CC and GDP. We use the null-
hypothesis described in the econometric theory section:

LR(∆ct 6=⇒ ∆yt) = 20.13∗∗[0.0053] and LR(∆yt 6=⇒ ∆ct) = 13.85[0.0538]

By this, we conclude that the lags of CC are statistically significant for GDP by
using a LR-test with the test statistic χ2(2). This means that CC does Granger cause
GDP, while GDP does not Granger cause CC.
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Figure 5: Impulse responses

4.3 Contemporaneous effects and impulse responses

In our estimation we find that ρ̂ = corr(ε1tε2t) = 0.2984. We calculate the critical
value for the estimated correlation to be:

1.96√
T

=
1.96√

108
= 0.188

The estimated correlation is therefore significantly different from zero, and thus
we have a contemporaneous effect.

Since we have a contemporaneous effect, interpreting a shock to ε1t is problematic,
since ε1t and ε2t correlate. We instead show the orthogonal impulse response functions
of the reduced VAR model in figure 5.

In the first two graphs of figure 5, we impose the restriction that ∆yt  ∆ct. This
means that ∆yt affects ∆ct in period t. In the last two graph we have the opposite
effect, such that ∆ct  ∆yt. It is clear to see that the contemporaneous effect from
∆ct to ∆yt is larger compared to the opposite. This indicates that CC have larger
contemporaneous effect on GDP than the other way.

5 Discussion and conclusion

The direction of the Granger causality could be explained by households consum-
ing/spending according to their confidence in the economy, so that they will spend
more when CC is high and less when CC is low. We do not discover a causal direction
the other way.
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As the Granger causality only includes preceding periods in the explanatory vari-
ables, we also study the contemporaneous effect to discover the impact in period t.
We determine that there are contemporaneous effects. The causal directions therefore
cannot be determined in the period t. It is not possible to assume ∆yt 6=⇒ ∆ct in
period t. However, we find that there are larger contemporaneous effects from CC on
GDP compared to the other way around.
Contrary to Utaka (2003) we find that consumer confidence not only have a short-
run impact on GDP, but also has a long-run impact on GDP. However, Utaka only
includes 2 lags in his model and uses data for Japan compared to Germany, while
ours includes 7, so it is possible we have overfitted our model.
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