
1 Introduction

This paper investigates the relationship between stock-market return, volatility and
trading volume. We estimate an AR(10) to use the residuals for further analysis.
The residuals are used and applied to a TGARCH(1,1) model to examine the effects
of surprise trading volume on conditional variance. This paper finds that the model
containing only positive surprise trading volume shocks is the better than one con-
taining both negative and positive. Furthermore, we estimate a news impact curve
to show the impact of ”good” and ”bad” news, and end up finding that bad news
has an effect on the volatility. Our results end up aligning with the results of Wagner
and Marsh (2005).

2 Description of data

The data has been downloaded from https://finance.yahoo.com/ for the period Novem-
ber 1, 1999 to November 22, 2021. The data set contains daily changes for the stock
market index consisting of blue chip German companies trading on the Frankfurt
Stock Exchange (DAX). We define the most relevant variables as:

• St = log V olt − log V olMA50t

• D logDAX = 100 · (logDAXt − logDAXt−1) = σ2
t

Where V olt is the trading volume and V olMA50 is the 50 days moving average of
log V olt.
Figure 1 shows a graph of St andD logDAX. As seen in table 1, we have kurtosis > 3,
which means the distribution has fatter tails than a Gaussian distribution, which
indicate ARCH-effects.

Mean Variance Skewness Kurtosis
St 0.0025 0.0915 0.2563 4.5535

Table 1: Descriptive statistics for St

3 Econometric Theory

3.1 GARCH-models

To model the conditional variance of our time series data for the German stock market,
we consider modeling an autoregressive conditional heteroskedasticity (ARCH) model.
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Figure 1: Logarithmic transformations of the time series

The ARCH model often requires many lags to be significant, so we instead choose
to model the general ARCH (GARCH) model. A general form of the GARCH(p,q)
model can be written as

σ2
t = w̄ +

p∑
j=1

αjϵ
2
t−j +

q∑
j=i

βjσ
2
t−j

The stationarity condition of the standard GARCH-model is given by:
p∑

j=1

aj +

q∑
j=1

βj < 1

With a Threshold-GARCH(1,1) (TGARCH) being:

σ2
t = ϖ + αϵ2t−1 + κϵ2t11(ϵt−1 < 0) + βσ2

t−1

The stationarity condition is:

α + β +
1

2
κ < 1

The Threshold effect allows the conditional variance to differ when there are positive
or negative shocks. The TGARCH model only contains the unknown parameters.
When we estimate the model we need α, β, κ ≥ 0 in order for σ2

t to be non-negative.
ϖ also needs to be non-negative for this to hold.
Our estimator of choice will be the QMLE, as the Student’s t(v)-distribution will
converge to the Gaussian as v → ∞ and the non-normal distribution of errors prevents
the use of MLE.
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3.2 Testing for ARCH-effects and misspecification tests

To test for ARCH-effects we apply a Breuch-Pagan LM test for no-heteroskedasticity,
where the auxiliary regression is:

ϵ̂t = β0 + β1ϵ
2
t−1 + ...+ βpϵ̂

2
t−p + error

The residuals {ϵ̂t}Tt=1 are estimated from the linear regression. The null hypotheses
is H0 : βp = 0 with the statistic:

ζARCH = T ∗R2 d→ χ2(p) under H0

We also test for autocorrelation with a Portmanteau-test with a χ2-distribution and
for normality with a Goodness-of-fit test based on a Jarque-Bera test, which uses the
same distribution.

3.3 Surprise Trading Volume

The surprise trading volume is both an expression of the private informations sets
and the differences between different agent’s information sets. Traders on a market
share a public information set, but also possess a private derived from market signals.
To find the surprise trading volume at a given time, we need to find the deviation
from the trend, which is given by:

St = logVolt − log VolMA50t

”log Volt” is the logarithm of the number of stocks traded, while ”log VolMA50t” is
the 50 day moving average of ”log Volt”. The surprise trading volume is given by the
error term, ft, in the following simple univariate time series given by an AR(k)-model:

St = δ+
k∑

i=1

ϕiSt−i+γ1FirstTrDayt+γ2LastTrDayt+κ1isJant+...+κ11isNovt+ft (1)

This way, we filter out the predictable part and we are left with the unpredictable
part, f̂t. To capture the effect of negative and positive surprise trading volumes, we
create the following two variables:

fpos
t = f̂t · 1(f̂t > 0)

fneg
t = f̂t · 1(f̂t < 0)

1(f̂t > 0) is 1 if f̂t > 0 and 0 elsewhere. The opposite is true for 1(f̂t < 0).
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4 Empirical analysis

4.1 Model selection

We estimate an AR(10) model including lags 1, 2, 3, 4, 5, 7 and 10 as given in (1).
This model suffers from ARCH-effects, normality errors and heteroskedasticity, but it
does not suffer from autocorrelation. The ARCH-effects are presented below, which
are quite significant in the χ2(1) distribution:

ζARCH = T ∗R2 = 5537 ∗ 0.3627 = 2008.26

This is why we do further analysis using the GARCH model. We do not interpret the
estimates of equation (1) but only use the residuals f̂t for further analysis. Therefore,
normality errors and heteroskedastity are not of high importance.
To be able to compare our model with Wagner and Marsh, we write up the following
TGARCH(1,1) model with positive lagged surprise trading volume included:

σ2
1t = ϖ + α1ϵ

2
t−1 + β1σ

2
t−1 + ω1f

pos
t + ω2f

pos
t−1 + κ1ϵ

2
t−1 · 1[ϵt−1 < 0] (2)

This equation is comparable to model M7 in the article, which Wagner and Marsh
considers to be a quite robust model. We also consider another specification in which
we have a negative surprise trading volume as well as a positive one, which we write
up as:

σ2
2t = ϖ + α1ϵ

2
t−1 + β1σ

2
t−1 + ω1f

pos
t + ω3f

neg
t + κ1ϵ

2
t−1 · 1[ϵt−1 < 0] (3)

In both of our models we also include threshold effects, since they are included in
Wagner and Marsh. This also allows negative and positive shocks to affect our model
in different ways. We impose the restriction that α1, β1 ≥ 0.

4.2 Estimation Results

As seen in table 2, the models indicate both normality problems and ARCH-effects.
Therefore we use the QMLE as estimator. The QMLE is still consistent when there
are ARCH effects, however it’s not efficient. The estimates of the two models are
given in table 2.

The coefficients of the shared variables of the two models shows similar results.
When there is a positive surprise trading volume in period t, it affects the conditional
mean negatively, while it affects the conditional variance positively. As mentioned
earlier, the surprise trading volume is serving as a proxy for private information flow.
When the private information flow is large in a day, there will also be a large amount
of trading in the market in the same day. Contrary to the conditional variance, the
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((2),fpos) ((3),fpos&fneg)
σ2
t−1 (Y) −0.06523

(0.0121)
−0.02204

(0.0127)

Constant (X) 0.1091
(0.0137)

0.1014
(0.0171)

ω3 (X) . −0.02324
(0.0709)

ω1 (X) −1.224
(0.135)

−0.9986
(0.134)

ω2 (X) −0.05967
(0.0786)

.

ϖ (H) 6.278 ∗ 10−11

(−0.000)
2.346 ∗ 10−08

(5.15∗10−08)

α1 (H) 7.989 ∗ 10−09

(−0.000)
0.0000
(−0.000)

β1 (H) 0.9311
(0.00624)

0.8960
(0.0162)

ω3 (H) . 0.1468
(0.0259)

ω1 (H) 5.315
(0.357)

0.5651
(0.102)

ω2 (H) −4.906
(0.340)

.

κ (H) 0.09167
(0.00971)

0.1688
(0.0264)

student-t df 45.94
(24.5)

11.35
(1.62)

alpha(1)+beta(1) 0.931 0.896
Log-lik. -8409.177 -8669.328
AIC 3.042 3.135
HQ 3.047 3.140
SC/BIC 3.055 3.149
Portmanteau, 1-74 [0.61] [0.63]
No ARCH(1) [0.00] [0.00]
Normality [0.00] [0.00]
T 5536 5537
Sample start 2000-01-28 2000-01-27
Sample end 2021-11-22 2021-11-22

Table 2: The table shows estimates of the model in equation (X) with various restric-
tions imposed. Standard errors in (·) and p-values in [·] for misspecification tests.
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conditional mean is affected negatively by a positive shock to the surprise trading
volume. It appears that more private information result in a higher activity in where
agents on the market sell their stocks, which in turn makes the mean stock price fall.

If we compare model (2) and (3), model (2) is the better model according to the
Akaike Information Criterion (AIC). The AIC obtains the maximized log-likelihood
function and penalize it for the numbers of variables in the model. According to model
(2), the effect on the conditional variance from the positive surprise trading volume
on the same day is large and highly significant. Contrary, a one day lagged positive
surprise trading volume has a large negative effect on the conditional variance. A high
surprise trading volume will result in high volatility in one day and low volatility the
next day.
Even though model (2) appears more robust than model (3) according to the AIC,
model (3) can still be useful for estimating the effects of negative surprise trading
volume. The effects on the conditional variance are small but significant in the model,
while the effect on the conditional mean is insignificant. Therefore, the negative
surprise trading volume is nowhere near as important as the positive trading volume.

4.3 News impact curves

The effect from a positive shock in model (2) is given by α1 = 7.989 ∗ 10−09, which is
very close to zero. Therefore, a positive market shock is too small to have an actual
effect on the conditional variance. We instead check the effect from a negative shock,
which is given by α1+κ = 7.989 ∗ 10−09+0.09167 = 0.09167. Negative shocks on the
market has an effect on the conditional variance. This indicates that ”bad news” has
an effect on the volatility of the stock market while ”good news” has no measurable
effects. These two effects can be seen by the news impact curve given in figure 2. The
news impact curve shows the effect of a shock ϵt−1 on the conditional variance.

5 Discussion and concluding remarks

When specifying our model, we could have opted for many different GARCH models.
One of the models we could have used is the EGARCH model. The EGARCH model
is an exponential model which does not put any restrictions on the parameters. How-
ever, if we estimate our model without any restriction on α1 and β1, we find that β1

is still positive and significant while α1 still very close to zero.
We could also consider expanding our model to include both lagged values of fpos

t

and fneg
t , but it was not possible to find any convergence for those models. At last,

we could consider including another lag for our σ2-variable - such as a fifth lag which
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Figure 2: News impact curves

might be significant, because then we would also examine the effect from the same
weekday. However, this would make it difficult to compare it to Wagner and Marsh.

Overall our results indicate the same as Wagner and Marsh (2005), where surprise
trading volume has a large effect on the volatility of the market and thus conditional
variance. However, it should be noted as we opted the for same GARCH-model and
examine the same data, and we therefore expect the same effects compared to their
study. Nonetheless, the effects from surprise trading volume are significantly larger
in this paper compared to theirs.
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