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Multiple periods

• Problem

max
c0,...,cT ,a1,...,aT+1

T

∑
t=0

βtu(ct ),

s.t. at+1 = atRt + wt − ct , a0R0 given, aT+1 ≥ 0

• Immediate option (conjecturing that aT+1 = 0):

max
a1,...,aT

T

∑
t=0

βtu(atRt + wt − at+1),

s.t. a0R0 given, aT+1 = 0
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Multiple periods
Using the IBC

• Approach the problem by constructing the Lagrangian through the IBC
• Denote prices as of time 0 by qt ≡ (R1R2 . . .Rt )−1, with q0 ≡ 1
• Take the IBC at the final period:

aT+1 = aTRT + wT − cT
= (aT−1RT−1 + wT−1 − cT−1)RT + wT − cT
= ...

= a0R0R1...RT + (w0 − c0)R1R2...RT + (w1 − c1)R2R3...RT +
+...+ (wT−1 − cT−1)RT + wT − cT
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Multiple periods
Using the IBC

• Multiplying the IBC by qT and exploiting aT+1 = 0:

qT aT+1 = a0R0R1...RT qT +

+qT [(w0 − c0)R1...RT + (w1 − c1)R2...RT + ...+ (wT−1 − cT−1)RT + wT − cT ]

qT aT+1 = a0
R0R1...RT
R1R2 . . .RT︸ ︷︷ ︸

=R0

+ (w0 − c0)
R1R2...RT
R1R2 . . .RT︸ ︷︷ ︸

=1

+

+ (w1 − c1)
R2R3...RT
R1R2 . . .RT︸ ︷︷ ︸
=R−11 =q1

+ ...+

+ (wT−1 − cT−1)
RT

R1R2 . . .RT︸ ︷︷ ︸
=(R1R2 ...RT−1)

−1=qT−1

+ (wT − cT )
1

R1R2 . . .RT︸ ︷︷ ︸
=qT
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Multiple periods
Using the IBC

• Thus

qT aT+1 = 0 = a0R0 +
T

∑
t=0
qt (wt − ct )

• ...and

L =
T

∑
t=0

βtu(ct ) + λ[a0R0 +
T

∑
t=0
qt (wt − ct )]
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Multiple periods
Using the IBC

• Differentiating w.r.t. c0, c1, ..., cT yields the FOCs

βtu′(ct ) = λqt , t = 0, . . . ,T .

• Combining the t and t + 1 FOCs yields the Euler equation

u′(ct ) = βRt+1u′(ct+1)

• As in the two-period case, the Euler equation characterizes the slope of
the optimal consumption path

• To find consumption levels we must combine the Euler equations with the
IBC
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Multiple periods
Dynamic budget constraints + terminal condition

• In alternative, we can use the original dynamic budget constraint (DBC)
and the terminal condition:

L =
T

∑
t=0

βtu(ct ) + λt [at+1 − atRt − wt + ct ] + µaT+1

• Thus:

L =
T

∑
t=0

βtu(ct ) + λt [at+1 − atRt − wt + ct ] + µaT+1

= β0u(c0) + β1u(c1) + ...+ βT u(cT ) +

+λ0[a1 − a0R0 − w0 + c0] + λ1[a2 − a1R1 − w1 + c1] +
+...+ λT [aT+1 − aTRT − wT + cT ] +
+µaT+1

7 / 33



Multiple periods
Dynamic budget constraints + terminal condition

• The FOCs w.r.t. c0, c1, ..., cT and a1, ..., aT are:

βtu′(ct ) = λt , t = 0, . . . ,T
λt = λt+1Rt+1, t = 0, . . . ,T − 1

• The FOC w.r.t. aT+1 is λT = µ, and the complementary slackness
condition is µaT+1 = 0

• Combining the FOCs for consumption, once again, yields:

u′(ct ) = βRt+1u′(ct+1)

• Moreover, non-satiation (i.e., u ′ > 0) implies that λT = µ > 0, so that
aT+1 = 0 (i.e., the transversality condition we argued before)

8 / 33



Infinite horizon

• There are three reasons to consider the limiting case T → ∞:
• Intergenerational altruism
• Time-invariant survival probability
• Mathematical simplicity
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Infinite horizon
No Ponzi game condition

• To derive the IBC we need to specify the terminal condition. Note that
limT→∞ aT+1 ≥ 0 would be unnecessarily tight

• Instead the appropriate constraint is the “no Ponzi game condition”
(NPGC):

lim
T→∞

qT aT+1 ≥ 0

• This allows holding debt in the long run, but prevents household from
permanently rolling it over and never servicing it
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Infinite horizon

• Using the NPGC we can derive the IBC:

a0R0 + lim
T→∞

T

∑
t=0
qt (wt − ct ) = lim

T→∞
qT aT+1 ≥ 0.

• Proceeding as before (i.e., setting limT→∞ qT aT+1 as small as possible),
allows us to write the Lagrangian as

L =
∞

∑
t=0

βtu(ct ) + λ[a0R0 +
∞

∑
t=0
qt (wt − ct )]

• Differentiating we get the same FOCs as before

βtu′(ct ) = λqt , t = 0, 1, . . . ,

and, thus, the Euler equation...
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Ramsey model

• We can now embed our microfounded model of consumption-saving
behavior in a general equilibrium model of capital accumulation

• For this we add a firm sector and impose market clearing

• The first framework we are going to detail is known as the Ramsey model
• We assume the economy is populated by a continuum of identical
households of mass one

• This representative agent has an infinite planning horizon
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Ramsey model
Aggregation

• The representative-agent assumption makes the aggregation of individual
choices trivial

• Since households are all alike and the economy is closed, the assets they
accumulate correspond to the physical capital stock in the economy
(S = I ):

kt = at

• Capital depreciates at rate δ per period. Thus the return Rt on household
savings equals the rental rate on capital paid by firms, rt , plus the
undepreciated capital:

Rt = rt + 1− δ
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Ramsey model
Firms

• Firms compete and take rental rates and wages as given. The
representative firm maximizes profits:

max
Kt ,Lt

f (Kt , Lt )− rtKt − wtLt

• FOCs

fK (Kt , Lt ) = rt
fL(Kt , Lt ) = wt

which define the demand functions for capital and labor
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Ramsey model
Dynamics

• Capital accumulation is determined from the dynamic budget constraint
and the fact that optimal consumption satisfies the Euler equation

at+1 = at (1+ rt − δ) + wt − ct + zt
u′(ct ) = β(1+ rt+1 − δ)u′(ct+1) (1)

• ...and the transversality condition (TVC)

lim
T→∞

qT kT+1 = 0⇔ lim
T→∞

βT u′(cT )kT+1 = 0
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Ramsey model
Market clearing

• Market clearing implies

Lt = 1

Kt = kt = at

• This implies the following resource constraint

at+1 = at (1+ rt − δ) + wt − ct + f (Kt , Lt )− rtKt − wtLt︸ ︷︷ ︸
=zt

kt+1 = kt (1+ rt − δ) + wt − ct + f (kt , 1)− rtkt − wt
kt+1 = kt (1− δ) + f (kt , 1)− ct (2)

• Intuition:
f (kt , 1) = kt+1 − kt (1− δ) + ct
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Ramsey model
Laws of motion

• Laws of motion for capital and consumption:

kt+1 = kt (1− δ) + f (kt , 1)− ct
u′(ct ) = β(1+ fK (kt+1, 1)− δ)u′(ct+1)

• Note that, given k0, these equations pin down kt+1 and ct+1, conditional
on the initial value of consumption, c0 (will get back to this later on)
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Ramsey model
Analysis

• Now we will perform a graphical analysis of the economy’s dynamics

• To do this we plot in a k, c phase diagram the curves (loci) that
correspond to ct+1 = ct = c and kt+1 = kt = k, i.e. the combinations of
k and c that respectively imply no time change for these variables:

c = f (k, 1)− δk

1 = β(1+ fK (k, 1)− δ)

• Their intersection defines the steady state, k∗, c∗. How do c and k move
outside these curves? For any initial allocation, is the steady state always
attained?
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Ramsey model
Analysis

Take first the locus for ct = ct+1 = c :

• High (low) level of capital⇒low (high) marginal product⇒low (high) rate
of interest

• If the interest rate is relatively low, we’d rather bring consumption forward,
so future consumption growth falls

• By contrast, if the interest rate is relatively high, we’d rather postpone
consumption, so future consumption growth rises
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Ramsey model
Analysis

• Take the locus for kt = kt+1 = k:

• High consumption⇒little output left to invest⇒capital falls
• Due to concavity, at high enough kt , kt+1 < kt even with low ct
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Ramsey model
Analysis

• We can combine both loci for the complete phase diagram
• There is a balanced growth path (BGP) at point E: c and k are constant at
their steady-state level, c∗ and k∗

• Arrows suggest that we may converge to BGP if we start somewhere in NE
or SW quadrant
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Ramsey model
Analysis

• According to Solow growth model, fK (kgr , 1) = δ defines the level of capital
that maximizes per-capita consumption along the BGP:
maxk c = f (k)− δk. Same situation here

• Note that k∗ must be below the Golden Rule level (why?)

fK (k
∗, 1) = δ+

1
β
− 1 > δ = fK (k

gr , 1)

• Define E as the Modified Golden Rule equilibrium: k∗ = kmgr
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Ramsey model
Balanced growth path

• Once the economy reaches the steady state, same dynamics as in the
Solow growth model

• The only difference is that steady-state capital (kmgr ) is lower than the
gr -level (kgr )

• The reason for this is that saving is the result of optimizing behavior by
households that value consumption-utility intertemporally and, absent
externalities, they would never choose a level of capital above the golden
rule level

• This is not the case in Solow, where MPC/MPS is exogenous
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Ramsey model
Welfare

• A natural question is whether the equilibrium of this economy represents
a desirable outcome

• First welfare theorem: if markets are competitive and complete and there
are no externalities (and if the number of agents is finite), then the
decentralized equilibrium is Pareto-effi cient– that is, it is impossible to
make anyone better off without making someone else worse off

• Since the conditions of the first welfare theorem hold in the Ramsey
model, the equilibrium must be Pareto-effi cient
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Ramsey model
Welfare

• To see this, consider the problem facing a social planner who can dictate
the division of output between consumption and investment at each date
and who wants to maximize the lifetime utility of a representative
household

• This problem is identical to that of an individual household except that
the paths of wt and rt are not taken as given (prove it):

max
ct ,kt+1

T

∑
t=0

βtu(ct ),

s.t. f (kt , 1) = kt+1 − kt (1− δ) + ct , k0 given, kt+1 ≥ 0
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Ramsey model
Analysis

• Suppose we start at point A
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Ramsey model
Analysis

• Suppose we start at point B
27 / 33



Ramsey model
Analysis

• Suppose we start at point C
28 / 33



Ramsey model
Analysis

• Suppose we start at point D
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Ramsey model
Analysis

For a given initial k0 we can rule out all initial c0 except one. Repeating this
logic for all k0 gives the saddle path

• For any k0 there exists a unique saddle path such that the economy
converges

• EE, LOM for capital and TVC hold at every point along this path
• Will not prove existence, but uniqueness follows once we pin down c0
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Ramsey model
Analysis

• Assume CRRA preferences, and let’s compute c0. Iterating the Euler
equation we get

ct =
(

βt

qt

) 1
σ

c0

• Substituting in the IBC:

c0
∞

∑
t=0

β
t
σ q
1− 1

σ
t = a0R0 +

T

∑
t=0
qtwt
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Ramsey model
Effect of a rise in the discount factor

• Since β governs consumption preferences, changes in this parameter will
affect the Euler equation

• The savings rate in Ramsey is endogenous, and determined by household
trade-off between current and future consumption

• One parameter that directly affects how much we save is the discount
rate (β−1): If we care about the future more, everything else equal, we
want to save more and consume less today

• As an exercise consider in a phase diagram the effect of a rise in β,
assuming the economy is initially in the steady state
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Ramsey model
Analysis
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