## Macroeconomics III - Lecture 3

Emiliano Santoro

University of Copenhagen

September 23, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

#### Ramsey model Laws of motion

• Laws of motion for capital and consumption:

$$\begin{aligned} k_{t+1} &= k_t(1-\delta) + f(k_t,1) - c_t \\ u'(c_t) &= \beta(1+f_K(k_{t+1},1)-\delta)u'(c_{t+1}) \end{aligned}$$

 Note that, given k<sub>0</sub>, these equations pin down k<sub>t+1</sub> and c<sub>t+1</sub>, conditional on the initial value of consumption, c<sub>0</sub> (will get back to this later on)

#### Ramsey model Analysis

- Now we will perform a graphical analysis of the economy's dynamics
- To do this we plot in a k, c phase diagram the curves (*loci*) that correspond to c<sub>t+1</sub> = c<sub>t</sub> = c and k<sub>t+1</sub> = k<sub>t</sub> = k, i.e. the combinations of k and c that respectively imply no time change for these variables:

$$c = f(k, 1) - \delta k$$
  
1 =  $\beta(1 + f_K(k, 1) - \delta)$ 

• Their intersection defines the steady state, k\*, c\*. How do c and k move outside these curves? For any initial allocation, is the steady state always attained?

## Ramsey model

Analysis



- We can combine both loci for the complete phase diagram
- There is a balanced growth path (BGP) at point E: c and k are constant at their steady-state level, c\* and k\*
- Arrows suggest that we may converge to BGP if we start somewhere in NE or SW quadrant

## Government spending

- Let's talk about fiscal policy
- Should we engage in stimulus spending? What is the fiscal multiplier? Does output increase 1-for-1 with government spending, more than 1 (Keynes) or less than 1?
- To keep things simple, we will start with (and relax some of these later)
  - A government spends a fixed amount of resources each period (military, education, arts, sports...)
  - Finances these with lump sum taxes on households (no debt, no distortionary taxes)
  - Government spending is pure consumption ("thrown into the ocean": no effect on household utility, or firm production)

## Government spending

Household problem almost unchanged

$$a_{t+1} = a_t(1+r_t-\delta) + w_t + z_t - c_t - T_t$$

- Firm problem unchanged
- New! Government budget constraint

$$T_t = G_t$$

#### Government spending

- How do the equilibrium conditions change?
- Law of motion for capital (derive this mechanically by imposing market clearing, i.e. combine household and government budget constraints with equilibrium prices)

$$k_{t+1} = k_t(1 - \delta) + f(k_t, 1) - c_t - G_t$$

- Why? Government purchases here are just another form of consumption
- Euler: Unchanged

$$u'(c_t) = \beta(1 + r_{t+1} - \delta)u'(c_{t+1})$$

- Why? Lump sum taxes are just another source of income.
  Doesn't change how you trade off consumption between today and tomorrow
- Practice: Verify this yourselves
- When could the Euler equation change?

## Government spending graphically: The long run



Solid: G = 0, dashed: G > 0

▶ For given k,  $G \uparrow, c \downarrow$  to keep  $k_{t+1} = k_t$ 

- In the long run, (move from E to E') public consumption replaces private consumption 1-for-1
- Capital accumulation and output are not affected

## Government spending graphically: The transition



- Suppose G = 0 for  $t < t_0$ . At  $t = t_0$ , G > 0 unexpectedly and permanently
- Capital can't jump, and we must be on the new saddle path at t<sub>0</sub>
- Thus, consumption adjust immediately to new BGP

- Realistically, government spending programs are not permanent
- How do Ramsey households respond if the shock does not last forever (but is unexpected)?



Experiment: Start on BGP with G = 0. At  $t_0$  we unexpectedly learn that for  $t \in [t_0, t_1)$ : G > 0, and for  $t \ge t_1$ : G = 0

How does the economy adjust?

- Option 1: Stay put at E ?
- Option 2: Jump to E' at t<sub>0</sub>, and jump back at t<sub>1</sub>?
- Option 3: ?

3 key steps to figuring out the adjustment:

- 1. When does new information arrive?
  - The only time c can jump without violating Euler
  - Here: Only t<sub>0</sub>. Not at t<sub>1</sub>
- 2. Which equations govern the dynamics in the long run, and from when on?
  - Must be on correct saddle path at exactly that time to converge
  - Here, the original equations, from  $t_1$  on
- 3. Which equations govern the dynamics between  $t_0$  and  $t_1$ ?
  - For  $t \in [t_0, t_1)$ , the dynamics are governed by the new equations



- At t<sub>0</sub>, jump to A
- From t<sub>0</sub> to t<sub>1</sub>, dynamics governed by new system (blue), so drift NW (dynamics governed by blue arrows from t<sub>0</sub> to t<sub>1</sub>)
- ▶ At t<sub>1</sub>, arrive at B
- From t<sub>1</sub> on, dynamics are governed by old system (green), so converge back to E

Households smooth consumption in response to temporary shocks:

- They adjust current consumption less than the drop in current income
- During the temporary income drop, they dissave (run down capital) to sustain higher consumption
- Once their income goes back to normal, they replenish the capital stock
- This is optimal because we've assumed concavity in the utility function

#### Temporary stimulus programs in the Ramsey model

- Depress private consumption
- "Crowd out" private investment (reduce the capital stock) and
- Reduce output
- Reason:
  - The government budget constraint holds: Higher spending means higher taxes and so less income for households
  - Temporary shock
  - Consumption-smoothing households

## Anticipated shocks

 Examples: Olympics, planned expiry of longstanding government programs

Practice for you:

- Experiment: Start at BGP with G = 0. At  $t_0$ , we unexpectedly learn that for  $t \ge t_1$ : G > 0, and for  $t \in [t_0, t_1), G = 0$
- Draw the adjustment in the phase diagram (follow the 3 steps as in slide 9)
- What is the intuition from the households' perspective?

## Anticipated shocks

▶ 3 key steps to figuring out the adjustment to this shock:

- 1. When does new information arrive?
  - Only time c can jump
  - Here: Only  $t_0$ . Not at  $t_1$
- 2. Which equations govern the dynamics in the long run, and from when on?
  - Must be on correct saddle path at exactly that time to converge
  - Here, the <u>new</u> equations from  $t_1$  on
- 3. Which equations govern the dynamics between  $t_0$  and  $t_1$ ?
  - For  $t \in [t_0, t_1)$ , the dynamics are governed by the <u>old</u> equations

Permanent increase in G, announced  $t_0$ , implemented  $t_1$ 



- Consumption jumps to A at t<sub>0</sub>
- Must be on saddle path (e.g. at B) at  $t_1$  to converge to E'
- Old (green) dynamics take the economy from A to B
- Economics: Households expect lower income in the future, so it is optimal to start adjusting consumption downwards now. This implies temporarily higher capital accumulation and output

## Government debt

We have seen that balanced budget stimulus spending does not work in the Ramsey model

- Permanent shock: Private consumption falls 1-for-1 with increases in government spending, no effect on output and capital accumulation
- Temporary shock: Capital and output fall temporarily, consumption also (but by less)
- Reason: Government expenditures had to be paid for with taxes, and households adjust consumption path in response to drops in after tax income
- So, natural question is: Is stimulus spending more successful if we finance it with debt instead of taxes?

#### Government debt: Budget constraints

- Suppose the government can borrow from the private sector
- Then there are 2 ways to finance an increase in expenditures taxes T<sub>t</sub> or debt b<sub>t</sub> - and its budget constraint becomes

$$b_{t+1} = G_t - T_t + R_t b_t \tag{1}$$

Note that all variables here are in per capita terms!

- Government revenue: Debt issuance  $b_{t+1} b_t$  and taxes  $T_t$
- Government expenditures: Spending  $G_t$  and interest expenses  $r_t b_t$

#### Government debt: Households

- Do households change their behavior when governments borrow instead of raising taxes to finance expenditures?
- We assume that households hold the government debt (in reality, through pension plans and mutual funds, for example)
- The household budget constraint is (assume zero depreciation, without loss of generality)

$$a_{t+1} = R_t a_t + w_t + z_t - c_t - T_t$$

with assets now given by

$$a_t = k_t + b_t$$

# Ricardian equivalence I

- To check how HH behavior and the equilibrium are affected by a government borrowing, instead of raising taxes, let's consider the equilibrium conditions
- ▶ Do HHs change how they allocate consumption across time?
  - No. Euler equation the same whether government runs balanced budget or borrows (can you show this?)
- TVC clearly unchanged
- Firm behavior not affected

## Ricardian equivalence I

Do the total resources in the economy change?

No. The equilibrium LOM for capital only depends on expenditures, not debt or taxes. Substitute GBC into HHBC to see this:

Key result (Ricardian equivalence): For a given path of government expenditures, whether they are financed with lump sum taxes or debt does not affect the equilibrium allocation

# Ricardian equivalence II

- Intuition for Ricardian equivalence?
- Households know that any government expenditures have to eventually be paid for by taxes
- In response to higher government spending financed with debt households reduce consumption and save in anticipation of the future tax hike
- They save exactly as much as the government needs to borrow
- The effect on capital accumulation and output is the same regardless of the finance method

# Ricardian equivalence III

Important assumptions for Ricardian equivalence to hold

- Lump-sum taxes
- Infinitely-lived households
- Closed economy, no international investors
- No default risk
- Unproductive government spending

## Distortionary taxation

- Taxes are distortionary when they affect optimal decisions
- Lump sum taxes: Not distortionary
- Proportional taxes: Distortionary
- Examples of proportional taxes: labor income taxes, consumption taxes (VAT), capital income taxes
- Key result: Distortionary capital taxation reduces equilibrium capital accumulation and welfare

# Households and the government

- Let  $\tau_t$  denote the tax rate on capital income
- Household budget constraint

$$\triangle a_{t+1} = a_t(1-\tau_t)r_t + w_t + z_t - c_t$$

Assume for simplicity that the government rebates any tax revenue to households so its budget constraint is

$$T_t = \tau_t r_t a_t$$

▶ Households are price takers: take  $\tau$ , T, w, and r as given, when making their decisions

## Firms and equilibrium LOM for capital

- The firm problem is not affected they continue to rent capital and labor, and optimally pay both their marginal product (check it)
- Combine household and government budget constraints, and use equilibrium prices to find

$$\triangle k_{t+1} = f(k_t, 1) - c_t - G_t$$

 The equilibrium law of motion for capital is unaffected by capital taxes

#### Euler equation

- $\blacktriangleright$  Let  $ilde{r}_t \equiv (1- au_t) r_t$  the after tax interest rate
- Then the Euler equation is given by

$$u'(c_t) = \beta(1 + \tilde{r}_{t+1})u'(c_{t+1})$$

- Capital taxes affect optimal consumption growth: The higher the tax, the lower the incentive to save, the slower consumption growth
- Mechanically: The after-tax return to capital 1 + r̃ must still be equal to the discount rate 1/β on the BGP. So the pre-tax return is higher, and k\* lower

## A thought experiment

There are large cross-country differences in tax rate on capital returns. Why is that? Wouldn't everybody want to invest in the lowest tax country?

## A thought experiment

- There are large cross-country differences in tax rate on capital returns. Why is that? Wouldn't everybody want to invest in the lowest tax country?
- This effectively asks: Suppose you live in a high capital tax country. Preferences across countries are identical. Do you have an incentive to invest in a neighboring low capital tax country in the long run?

## A thought experiment

- There are large cross-country differences in tax rate on capital returns. Why is that? Wouldn't everybody want to invest in the lowest tax country?
- This effectively asks: Suppose you live in a high capital tax country. Preferences across countries are identical. Do you have an incentive to invest in a neighboring low capital tax country in the long run?
- Answer: No, the after-tax return on capital will be the same across countries. (There will be more investment in the low tax country, to the point where the after tax returns are equalized)