Macroeconomics III Lecture 4

Emiliano Santoro

University of Copenhagen

Overlapping generations model

- ▶ Second basic workhorse model in dynamic macroeconomics
- I New ingredient: (exogenous) population turnover

- \blacktriangleright How does this affect aggregate savings? Welfare?
- \blacktriangleright Is there a role for the government to provide for the old (Social Security)?
- \triangleright Does fiscal policy work differently in a setting with finite lives? How about government borrowing?

Overlapping generations model

▶ Due to and named after Peter Diamond, dates to 1965

- \blacktriangleright Builds on ealier work by Samuelson one of the textbook exercises goes through the original Samuelson model if you're interested
- ▶ Yet another Nobel prize winner (2010) but for work on unemployment, together with Mortensen and Pissarides

Outline

- 1. OLG model setup (DR 2.8)
- 2. Characterizing the solution (DR 2.9-2.10)
- 3. Dynamics in a well-behaved special case (DR 2.10)
- 4. Welfare (DR 2.11)

Outline

1. OLG model setup (DR 2.8)

- 2. Characterizing the solution (DR 2.9-2.10)
- 3. Dynamics in a well-behaved special case (DR 2.10)
- 4. Welfare (DR 2.11)

OLG model setup

- \blacktriangleright Time is discrete and infinite $t = 0, 1, 2, ...$
- \blacktriangleright The economy is populated by agents that live for 2 periods enough to derive qualitative implications, generalizable but then we need a computer to solve
- \blacktriangleright L_t individuals are born in period t. Assume the population grows at constant rate n , so

$$
L_t = L_{t-1}(1+n)
$$

 \blacktriangleright Note that this means that there are L_t young people and $L_{t-1} = L_t/(1 + n)$ old people alive in period t

Preferences

 \blacktriangleright Agents derive utility from consumption while alive:

$$
U_t = u(c_{1t}) + \frac{1}{1+\rho}u(c_{2t+1})
$$

 \blacktriangleright c_{1t} : Consumption when young at time t \triangleright c_{2t+1} : Consumption when old at time $t+1$ \blacktriangleright ρ : Discount rate

Budget constraints

- \triangleright Agents work when young. They supply 1 unit of labor inelastically at wage rate w_t
- \blacktriangleright They split the labor income between consumption c_{1t} and savings s_t
- \blacktriangleright They retire when old and just consume their gross savings
- In Let r_{t+1} denote the interest rate between t and $t+1$
- \blacktriangleright Budget constraints in each period of life:

$$
c_{1t} + s_t = w_t
$$

$$
c_{2t+1} = (1 + r_{t+1})s_t
$$

In Lifetime budget constraint (substitute out s_t)

$$
c_{1t} + \frac{c_{2t+1}}{1 + r_{t+1}} = w_t
$$

Maximization problem

 \blacktriangleright For every t, agents born at time t solve the following problem

$$
\max_{c_{1t}, c_{2t+1}} u(c_{1t}) + \frac{1}{1+\rho} u(c_{2t+1})
$$

subject to

$$
c_{1t} + \frac{c_{2t+1}}{1 + r_{t+1}} = w_t
$$

 \blacktriangleright The initial old make no choices and fully consume their wealth

Firms and production

- \triangleright Production is the same as before CRS technology, competitive markets, profit-maximizing firms
- \blacktriangleright Abstract from capital depreciation. Solving for firms' problem gives us the solutions for factor prices (prove it for the Cobb-Douglas case):

$$
r_t = f'(k_t)
$$

$$
w_t = f(k_t) - f'(k_t)k_t
$$

where $k \equiv \frac{K}{l}$ $\frac{\kappa}{L}$ capital per worker (not per capita, since we now have non-working old)

Outline

1. OLG model setup (DR 2.8)

2. Characterizing the solution (DR 2.9-2.10)

- 3. Dynamics in a well-behaved special case (DR 2.10)
- 4. Welfare (DR 2.11)

Characterizing solution to household problem

 \blacktriangleright Set up the Lagrangian

$$
\mathcal{L} = u(c_{1t}) + \frac{1}{1+\rho}u(c_{2t+1}) + \lambda \left[w_t - c_{1t} - \frac{c_{2t+1}}{1+r_{t+1}}\right]
$$

to find the FOCs

$$
\begin{aligned}\n [c_{1t} :] \qquad 0 &= u'(c_{1t}) - \lambda \\
[c_{2t+1} :] \qquad 0 &= \frac{1}{1+\rho} u'(c_{2t+1}) - \lambda \frac{1}{1+r_{t+1}}\n \end{aligned}
$$

 \triangleright Substitute out the Lagrange multiplier to get

$$
u'(c_{1t})=\frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})
$$

The OLG-version of the Euler equation!

Euler equation

$$
u'(c_{1t})=\frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})
$$

- \blacktriangleright Intuition? Describes how marginal utilities of consumption between youth and old age are optimally related
- \triangleright We equate marginal cost of giving up a unit of consumption today with the marginal benefit of consuming it (plus interest) tomorrow

Euler equation

- \blacktriangleright Why equate?
- \blacktriangleright Suppose we don't

$$
u'(c_{1t}) < \frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})
$$

- \triangleright Then we can reduce c_{1t} by a small amount Δ , losing utility $u'(c_{1t})\Delta$
- \triangleright We invest it and consume the proceeds tomorrow, gaining $1+r_{t+1}$ $\frac{+r_{t+1}}{1+\rho}$ u′(c $_{2t+1}$)∆
- ▶ We just made a net utility gain! So we could not have been optimizing when $u'(c_{1:t}) < \frac{1+r_{t+1}}{1+o}$ $\frac{+r_{t+1}}{1+\rho}$ u' (c_{2t+1})

By the same argument, it can't be that

$$
u'(c_{1t}) > \frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})
$$

$$
\blacktriangleright
$$
 Thus, $u'(c_{1t}) = \frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})$ at the optimum

Euler equation

 \blacktriangleright If we assume CRRA utility

$$
u(c) = \begin{cases} \frac{c^{1-\sigma}-1}{1-\sigma} & , \sigma \neq 1\\ \log c & , \sigma = 1 \end{cases}
$$

we can derive a relationship for the levels of consumption:

$$
u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho} u'(c_{2t+1})
$$

$$
c_{1t}^{-\sigma} = \frac{1 + r_{t+1}}{1 + \rho} c_{2t+1}^{-\sigma}
$$

$$
\frac{c_{2t+1}}{c_{1t}} = \left(\frac{1 + r_{t+1}}{1 + \rho}\right)^{\frac{1}{\sigma}}
$$

- \triangleright Consumption grows over the lifecycle when interest rates are high relative to the discount rate
- \blacktriangleright This effect is stronger, the more willing agents are to substitute consumption over time (high IES, low σ)

From consumption to savings

- \triangleright What can we say about optimal savings, both at the individual and the aggregate level?
- \blacktriangleright Combine the budget constraints

$$
c_{1t} + s_t = w_t
$$

$$
c_{2t+1} = (1 + r_{t+1})s_t
$$

with the Euler equation

$$
u'(c_{1t})=\frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})
$$

by substituting out consumption

$$
u'(w_t - s_t) = \frac{1 + r_{t+1}}{1 + \rho} u'[(1 + r_{t+1})s_t]
$$

 \blacktriangleright This implicitly defines optimal savings as a function of the wage and the interest rate, $s(w_t, r_{t+1})$

Characterizing optimal savings

$$
u'(w_t - s_t) = \frac{1 + r_{t+1}}{1 + \rho} u'[(1 + r_{t+1})s_t]
$$

 \blacktriangleright Effect of interest rate on savings is in general ambiguous ► Substitution effect: $\frac{\partial s}{\partial r} > 0$. Save more because of higher

return

▶ Income effect: $\frac{\partial s}{\partial r} < 0$. Save less because you are richer

A note on aggregation

- \triangleright Once we know individual decisions, what are the aggregates in the OLG setting?
- Aggregate savings? As only the young save, and there are L_t of them:

$$
S_t = s_t L_t
$$

Aggregate capital stock in $t + 1$: (i) saving by the young, (ii) dissaving by the old, (iii) un-depreciated capital carried over from t:

$$
K_{t+1} = S_t - (1 - \delta)K_t + (1 - \delta)K_t
$$

$$
K_{t+1} = S_t
$$

$$
K_{t+1}(1 + n) = s_t
$$

Aggregate capital accumulation

 \blacktriangleright Aggregate capital accumulation is

$$
k_{t+1}(1+n) = s(w_t, r_{t+1})
$$

 \triangleright We know equilibrium wage and interest rates as a function of capital per worker - substitute those in:

$$
k_{t+1}(1+n) = s[f(k_t) - k_t f'(k_t), f'(k_{t+1})]
$$

 \blacktriangleright This is an implicit law of motion for aggregate capital per worker: For given k_0 , we can trace out the complete optimal path for $\{k_t\}_{t=1}^\infty$

Outline

- 1. OLG model setup (DR 2.8)
- 2. Characterizing the solution (DR 2.9-2.10)
- 3. Dynamics in a well-behaved special case (DR 2.10)
- 4. Welfare (DR 2.11)

To make more progress solving for the equilibrium, we need to make assumptions on functional forms Assumption 1 Logarithmic utility

 $u(c) = \log c$

Assumption 2 Cobb-Douglas production function

$$
F(K,L)=K^{\alpha}L^{1-\alpha}, \alpha\in (0,1)
$$

Log CD case: Consumption, savings and capital accumulation

 \blacktriangleright The Euler equation simplifies

$$
u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho} u'(c_{2t+1})
$$

\n
$$
\frac{1}{c_{1t}} = \frac{1 + r_{t+1}}{1 + \rho} \frac{1}{c_{2t+1}}
$$

\n
$$
c_{2t+1} = \frac{1 + r_{t+1}}{1 + \rho} c_{1t}
$$

Log CD case: Consumption, savings and capital accumulation

 \triangleright We can derive an explicit expression for optimal savings - start with previous expression:

$$
u'(w_t - s_t) = \frac{1 + r_{t+1}}{1 + \rho} u'((1 + r_{t+1})s_t)
$$

$$
\frac{1}{w_t - s_t} = \frac{1 + r_{t+1}}{1 + \rho} \frac{1}{(1 + r_{t+1})s_t}
$$

$$
s_t = \frac{1}{1 + \rho}(w_t - s_t)
$$

$$
s_t = \frac{1}{2 + \rho} w_t
$$

- \triangleright Substitution and income effects of r on s cancel each other out with log utility
- \triangleright We save a *constant* fraction of labor income!

Log CD case: Consumption, savings and capital accumulation

 \blacktriangleright And, finally, capital accumulation per worker becomes

$$
k_{t+1}(1+n) = s_t
$$

=
$$
\frac{1}{2+\rho}w_t
$$

=
$$
\frac{1}{2+\rho}(1-\alpha)k_t^{\alpha}
$$

 \blacktriangleright k_{t+1} is a concave function of k_t , so there will be a unique steady state, and we'll converge to it

Dynamics

 \triangleright Could analyze policy experiments - fall in ρ ?

Dynamics

- \triangleright So this looks a lot like Solow, there is nothing new in the aggregate dynamics! Constant savings rate, convergence to BGP along which every per-worker variable is constant
- \blacktriangleright It turns out that things become very different very quickly when we depart from logCD assumption...
- 1. OLG model setup (DR 2.8)
- 2. Characterizing the solution (DR 2.9-2.10)
- 3. Dynamics in a well-behaved special case (DR 2.10)
- 4. Welfare (DR 2.11)

Welfare

- \blacktriangleright The one major difference between the BGPs of Ramsey and Diamond's models: Welfare
- \blacktriangleright In Ramsey, it is not Pareto optimal to accumulate capital above the MGR (MGR $=$ SS $=$ BGP i.e., variables denoted with a $"$ *")
- \blacktriangleright Ramsey households don't accumulate above the BGP in the CE (competitive or decentralized equilibrium) because the FWT holds: The CE is Pareto optimal
- ▶ Different in OLG! Households may accumulate capital above the BGP, as this is not Pareto optimal

Golden Rule in OLG

- \blacktriangleright Let's calculate the GR level in the OLG economy.
- \triangleright As usual, the GR maximizes BGP consumption such that $c = f(k) - nk$. Thus:

$$
f'(k^{gr})=n
$$

 \triangleright Using the capital accumulation equation on the BGP, we get

$$
k^* = \left[\frac{1-\alpha}{(1+n)(2+\rho)}\right]^{\frac{1}{1-\alpha}}
$$

and, thus

$$
f'(k^*) = \alpha (k^*)^{\alpha - 1} = \frac{\alpha}{1 - \alpha} (1 + n)(2 + \rho)
$$

Golden Rule in OLG

 \triangleright So, capital is above the GR if:

$$
k^* > k^{\text{gr}} \iff f'(k^*) < n = f'(k^{\text{gr}}) \iff \frac{\alpha}{1-\alpha}(1+n)(2+\rho) < n
$$

 \blacktriangleright No reason why that shouldn't occur, depends on parameters

- \triangleright Capital is more likely to be above consumption-maximizing level in the long run if
	- Agents are relatively patient (low ρ)
	- \blacktriangleright Returns to capital don't diminish too fast (low capital income share, α)
	- ▶ Population growth?

\blacktriangleright To understand

- 1. Why capital above GR is not optimal and
- 2. Why this can happen in the competitive equilibrium of the OLG model

let's consider what the Social Planner would do

- ▶ To see why it is inefficient to have $k^* > k^{gr}$, assume to introduce a social planner into a OLG economy at the BGP
- \blacktriangleright If the planner does nothing to alter capital per worker, $c^* = f(k^*) - nk^*$
- \blacktriangleright Assume a one-off reduction in investment at period T $(\Delta k < 0$) to sustain higher consumption, then move straight to the new BGP
- \blacktriangleright Clearly feasible. Are we also better off?

 \blacktriangleright What is the change in aggregate consumption per worker? In T the resources available for consumption are:

$$
c_T = f(k^*) + (k^* - k^{gr}) - nk^{gr}
$$

For
$$
\forall t > T
$$
:
\n
$$
c^{gr} = f(k^{gr}) - nk^{gr}
$$
\n
$$
\triangleright
$$
 So $\Delta c > 0, \forall t$

- \blacktriangleright The Planner essentially takes savings from the current young and distributes it across generations as consumption
- \blacktriangleright The young are happy with this because they are promised a consumption transfer when old that is higher than what they give up today
	- \blacktriangleright While savings have a gross return $1 + r_t$, the planner's transfer has an implicit return of $1 + n$ (since there are $1 + n$ times as many young as old)
	- So this is a good deal for the current young when $n > r_t$, that is when $k^* > k^{gr}$
- \blacktriangleright Future generations are clearly better off. They enjoy higher consumption
- \blacktriangleright Everyone consumes more and is better off

Welfare in OLG

- \triangleright Why don't agents in the OLG CE do the same thing as the Social Planner when $k^* > k^{\text{gr}}$?
- Recall the Social Planner's transfer scheme: He takes savings from the current young and promises them a transfer when they are old
- \blacktriangleright This is not implementable in the CE: Current young would have to enter into a contract with tomorrow's unborn young
- \blacktriangleright The underlying reason for the lack of Pareto optimality when $k^* > k^{\text{gr}}$ thus is that markets are incomplete (one of the FWT assumptions is broken!)
- \blacktriangleright Which assumption can we introduce to restore Pareto optimality in an OLG model?

Summary: Welfare in OLG

- ▶ Competitive equilibrium of OLG economy may feature capital above the Golden Rule
	- \blacktriangleright Because there are no restrictions on how patient agents are they only live for a finite time
- \blacktriangleright If the economy goes on forever, then this is not Pareto optimal