Macroeconomics III Lecture 5

Emiliano Santoro

University of Copenhagen

Fall 2021

Government spending

- What happens to capital accumulation when we introduce a government that taxes households and spends resources?
- We asked this in the infinite horizon context, instructive to see the effect of population turnover
- Stick with simplest case again: Government makes "useless" purchases G_t (per worker) and pays for them by levying lump sum taxes T_t (per worker) on the young each period

Government spending

Agents' budget constraints when young and old become

$$c_{1t} + s_t = w_t - T_t$$

$$c_{2t+1} = (1 + r_{t+1})s_t$$

► The only place T_t enters is in wage income when young, redefine $\tilde{w}_t \equiv w_t - T_t$, then we know (from log-utility)

$$s_t = rac{1}{2+
ho} ilde{w}_t$$

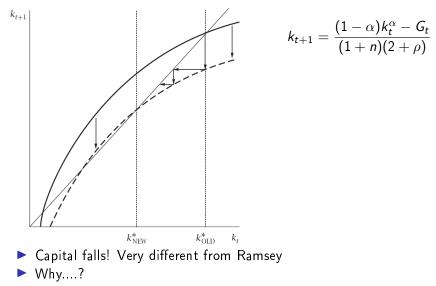
and

$$k_{t+1} = \frac{s_t}{1+n} = \frac{\tilde{w}_t}{(1+n)(2+\rho)} = \frac{(1-\alpha)k_t^{\alpha} - T_t}{(1+n)(2+\rho)}$$

In equilibrium:

$$k_{t+1} = \frac{(1-\alpha)k_t^{\alpha} - G_t}{(1+n)(2+\rho)}$$

Effect of permanent unexpected increase in government spending



Effect of permanent unexpected increase in government spending

- ▶ In Ramsey, G > 0 had no effect on capital accumulation
 - Permanent drop in PDV of lifetime income, thus can't smooth effect on consumption and adjust 1:1
- ► In OLG:
 - As in Ramsey, households are poorer in PDV terms so they need to reduce PDV consumption
 - Euler equation: Optimal to smooth, ie reduce both c_{1t} and c_{2t+1}
 - The only way to lower c_{2t+1}, is to lower s_t
- Underlying reason: Only the young pay taxes

Government spending: Other types of shocks

- Let's consider other types of shocks
- Does stimulus spending work here (i.e., a temporary unexpected increase in spending)?

Government spending: Other types of shocks

- Let's consider other types of shocks
- Does stimulus spending work here (i.e., a temporary unexpected increase in spending)?
 - Same effect as for permanent shock
 - Young individuals today don't care if G_t is higher just today or forever, they behave exactly the same
 - Would be more similar to Ramsey if we had more than 2 periods of life
- How about anticipated shocks?

Government spending: Other types of shocks

- Let's consider other types of shocks
- Does stimulus spending work here (i.e., a temporary unexpected increase in spending)?
 - Same effect as for permanent shock
 - Young individuals today don't care if G_t is higher just today or forever, they behave exactly the same
 - Would be more similar to Ramsey if we had more than 2 periods of life
- How about anticipated shocks?
 - No effect
 - Young individuals today don't care if G_t is announced to be higher tomorrow, they only care about G_t today
 - Would be more similar to Ramsey if we had more than 2 periods of life

Social security and gov. debt

- Two policy applications of OLG models:
- 1. Social security (BF 3.2)
 - 1.1 Fully funded system
 - 1.2 PAYG system
- 2. Government debt
 - 2.1 Ricardian equivalence
 - 2.2 Equivalence between social security and government debt

Social Security

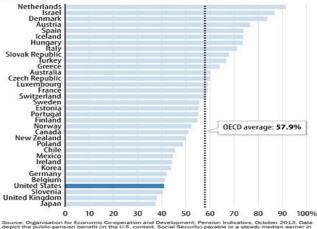
- Social security: Government provides for citizens who don't have an income of their own
- Motivations: Retirement, short-sightedness/insufficient own savings, redistribution
- Broadly, 2 types of social security systems:
- 1. Unfunded pay-as-you-go (PAYG) systems
 - Current young pay contributions as benefits to current old
- 2. Fully funded systems
 - Current young pay contributions as benefits to themselves when old
- Since social security has to do with savings, it can affect aggregate capital accumulation - let's see exactly how

Social Security around the world

- Social security programs exist in most countries around the world
 - Germany: First country to introduce social security (Bismarck in 1884)
 - Widely adopted in developed countries post WWI
 - ▶ US: Introduced by Roosevelt in 1935 after the Great Depression
 - Denmark and Scandinavian welfare states
- All OECD systems are PAYG, fully funded more common in developing countries

Social Security benefits

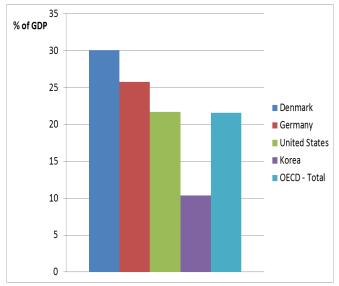
Social Security benefits for median worker as a percentage of earnings



each country.

- Danish retiree receives >80% of earnings as social security benefits
- US retiree only 40%!

Public Social Security expenditures



 \blacktriangleright Old age is the largest program (\approx 10% of GDP), next largest health

Social Security issues

- Many PAYG systems have funding problems because of aging populations (n < 0)
 - In the US in 1935, 45 people paid into the system for every retiree. Today: 3:1!!!
- Key issue when labor is mobile cf. migration debate in Europe: Should recent migrants be able to receive benefits in destination country, without having paid in when young themselves?
- Social security can distort incentives
 - E.g., encourages early retirement, discourages to work. Policies to counteract: Later retirement ages, benefits tied to contributions, flexible labor markets

Social security and gov. debt

Two policy applications of OLG models:

- 1. Social security (BF 3.2)
 - 1.1 Fully funded system
 - 1.2 PAYG system
- 2. Government debt
 - 2.1 Ricardian equivalence
 - 2.2 Equivalence between social security and government debt

Fully funded system

Government raises contributions d_t from the young, invests these and pays them out with interest as benefits next period:

$$b_{t+1} = (1 + r_{t+1})d_t$$

Budget constraint when young in t

$$c_{1t} + s_t + d_t = w_t$$

• Budget constraint when old in t + 1

$$c_{2t+1} = (1+r_{t+1})s_t + b_{t+1} (1+r_{t+1})(s_t + d_t)$$

Same return on contributions and individual savings, as physical capital is the only means of saving (also for the pension system)

Fully funded system

- Agents do not choose d_t, but take it as given, so they perceive it as a reduction in income - just like lump sum taxes T_t
- Hence their Euler equation is unchanged:

$$u'(c_{1t}) = \frac{1+r_{t+1}}{1+\rho}u'(c_{2t+1})$$

and, using the budget constraints:

$$u'[w_t - (s_t + d_t)] = \frac{1 + r_{t+1}}{1 + \rho} u'[(1 + r_{t+1})(s_t + d_t)]$$

 Aggregate savings (capital accumulation) in t are now the sum of individual savings and SS contributions

$$s_t + d_t = (1+n)k_{t+1}$$

Effect of fully-funded social security on capital accumulation?

Fully funded system: Effect on capital accumulation

▶ Define $\tilde{s} \equiv s + d$, compare the equations characterizing the equilibrium in the two economies, with and without SS:

$$c_{1t} + \tilde{s}_t = w_t \qquad c_{1t} + s_t = w_t$$

$$c_{2t+1} = (1 + r_{t+1})\tilde{s}_t \qquad c_{2t+1} = (1 + r_{t+1})s_t$$

$$u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho}u'(c_{2t+1}) \qquad u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho}u'(c_{2t+1})$$

$$k_{t+1} = \frac{\tilde{s}_t}{1 + n} \qquad k_{t+1} = \frac{s_t}{1 + n}$$

- > Any k_t that solves the LHS system also solves the RHS
- ► No effect on capital accumulation
- Public savings d_t exactly offset private savings s_t they have the same return, after all

Social security and gov. debt

Two policy applications of OLG models:

1. Social security (BF 3.2)

1.1 Fully funded system

- 1.2 PAYG system
- 2. Government debt
 - 2.1 Ricardian equivalence
 - 2.2 Equivalence between social security and government debt

PAYG system

In PAYG system, government raises contributions d_t from current young, and pays them out as benefits to current old:

$$b_t = (1+n)d_t$$

Budget constraint when young in t

$$c_{1t} + s_t + d_t = w_t$$

• Budget constraint when old in t + 1

$$c_{2t+1} = (1 + r_{t+1})s_t + (1 + n)d_{t+1}$$

Implicit return on contributions is population growth - there are more young paying in today than old recipients

PAYG system

- Contributions are taken as given, so Euler equation unchanged
- Substitute out for consumption, using the budget constraints, we get:

$$u'[w_t - (s_t + d_t)] = \frac{1 + r_{t+1}}{1 + \rho} u'[(1 + r_{t+1})s_t + (1 + n)d_{t+1}]$$

Aggregate savings are given by

$$s_t = (1+n)k_{t+1}$$

Note that the contributions are *not* transferred across time in this system, so they don't contribute to capital accumulation

PAYG system: Effect on capital accumulation

▶ Is k_{t+1} affected now?

Let's compare equilibrum conditions with and without SS:

$$c_{1t} + s_t + d_t = w_t \qquad c_{1t} + s_t = w_t$$

$$c_{2t+1} = (1 + r_{t+1})s_t + (1 + n)d_{t+1} \qquad c_{2t+1} = (1 + r_{t+1})s_t$$

$$u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho}u'(c_{2t+1}) \qquad u'(c_{1t}) = \frac{1 + r_{t+1}}{1 + \rho}u'(c_{2t+1})$$

$$k_{t+1} = \frac{s_t}{1 + n} \qquad k_{t+1} = \frac{s_t}{1 + n}$$

The same k_t won't solve both systems of equations in general
 So PAYG systems do affect capital accumulation. How?

Let's use the log CD case to identify the sign of the effect. Assume:

$$u(c) = \log c$$

and

$$f(k) = k^{\alpha}$$

Also assume full depreciation

$$\delta = 1$$

such that R = r (in general, $R = 1 + f'(k) - \delta$).

Finally, suppose that contributions are a fixed fraction τ of wage income:

$$d_t = \tau w_t$$

$$u'(c_{1t}) = \frac{r_{t+1}}{1+\rho}u'(c_{2t+1})$$

$$u'(c_{1t}) = \frac{r_{t+1}}{1+\rho}u'(c_{2t+1})$$
$$\frac{1}{c_{1t}} = \frac{r_{t+1}}{1+\rho}\frac{1}{c_{2t+1}}$$

$$u'(c_{1t}) = \frac{r_{t+1}}{1+\rho}u'(c_{2t+1})$$
$$\frac{1}{c_{1t}} = \frac{r_{t+1}}{1+\rho}\frac{1}{c_{2t+1}}$$
$$\frac{1}{w_t - s_t - d_t} = \frac{r_{t+1}}{1+\rho}\frac{1}{r_{t+1}s_t + (1+n)d_{t+1}}$$

$$u'(c_{1t}) = \frac{r_{t+1}}{1+\rho}u'(c_{2t+1})$$
$$\frac{1}{c_{1t}} = \frac{r_{t+1}}{1+\rho}\frac{1}{c_{2t+1}}$$
$$\frac{1}{w_t - s_t - d_t} = \frac{r_{t+1}}{1+\rho}\frac{1}{r_{t+1}s_t + (1+n)d_{t+1}}$$
$$r_{t+1}s_t + (1+n)d_{t+1} = \frac{r_{t+1}}{1+\rho}(w_t - s_t - d_t)$$

Let's derive a closed form expression for individual savings

$$u'(c_{1t}) = \frac{r_{t+1}}{1+\rho}u'(c_{2t+1})$$
$$\frac{1}{c_{1t}} = \frac{r_{t+1}}{1+\rho}\frac{1}{c_{2t+1}}$$
$$\frac{1}{w_t - s_t - d_t} = \frac{r_{t+1}}{1+\rho}\frac{1}{r_{t+1}s_t + (1+n)d_{t+1}}$$
$$r_{t+1}s_t + (1+n)d_{t+1} = \frac{r_{t+1}}{1+\rho}(w_t - s_t - d_t)$$

Re-arrange to get

$$s_t = rac{1}{2+
ho} \left[(w_t - d_t) - rac{1+
ho}{r_{t+1}} (1+n) d_{t+1}
ight]$$

Optimal individual savings:

$$s_t = \frac{1}{2+\rho} \left[(w_t - d_t) - \frac{1+\rho}{r_{t+1}} (1+n) d_{t+1} \right]$$

- Savings are a constant share of: disponsable income when young minus the current value of gross SS benefits when old
- Ceteris paribus, young households save less because
 - They have less disposable income when young and
 - They know they'll get benefits only when already old

▶ Let's derive the equilibrium expression for k_{t+1}

- Let's derive the equilibrium expression for k_{t+1}
- ▶ Using *s*_t we find

$$k_{t+1} = \frac{1}{1+n}s_t = \frac{1}{(1+n)(2+\rho)}(w_t - d_t) - \frac{1+\rho}{2+\rho}\frac{1}{r_{t+1}}d_{t+1}$$

- Let's derive the equilibrium expression for k_{t+1}
- ▶ Using *s*_t we find

$$k_{t+1} = \frac{1}{1+n}s_t = \frac{1}{(1+n)(2+\rho)}(w_t - d_t) - \frac{1+\rho}{2+\rho}\frac{1}{r_{t+1}}d_{t+1}$$

• Since $d_t = \tau w_t$

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} w_t(1-\tau) - \frac{1+\rho}{2+\rho} \frac{1}{r_{t+1}} \tau w_{t+1}$$

- Let's derive the equilibrium expression for k_{t+1}
- ▶ Using *s*_t we find

$$k_{t+1} = \frac{1}{1+n}s_t = \frac{1}{(1+n)(2+\rho)}(w_t - d_t) - \frac{1+\rho}{2+\rho}\frac{1}{r_{t+1}}d_{t+1}$$

Since $d_t = \tau w_t$

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} w_t(1-\tau) - \frac{1+\rho}{2+\rho} \frac{1}{r_{t+1}} \tau w_{t+1}$$

• Using equilibrium
$$\frac{w_{t+1}}{r_{t+1}} = \frac{(1-\alpha)k_{t+1}^{\alpha}}{\alpha k_{t+1}^{\alpha-1}}$$

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} w_t(1-\tau) - \frac{1+\rho}{2+\rho} \frac{1-\alpha}{\alpha} \tau k_{t+1}$$

- Let's derive the equilibrium expression for k_{t+1}
- Using s_t we find

$$k_{t+1} = \frac{1}{1+n}s_t = \frac{1}{(1+n)(2+\rho)}(w_t - d_t) - \frac{1+\rho}{2+\rho}\frac{1}{r_{t+1}}d_{t+1}$$

Since $d_t = \tau w_t$

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} w_t(1-\tau) - \frac{1+\rho}{2+\rho} \frac{1}{r_{t+1}} \tau w_{t+1}$$

• Using equilibrium
$$\frac{w_{t+1}}{r_{t+1}} = \frac{(1-\alpha)k_{t+1}^{\alpha}}{\alpha k_{t+1}^{\alpha-1}}$$

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} w_t(1-\tau) - \frac{1+\rho}{2+\rho} \frac{1-\alpha}{\alpha} \tau k_{t+1}$$

Rearranging

$$k_{t+1} = \frac{1}{1 + \frac{1+\rho}{2+\rho} \frac{(1-\alpha)}{\alpha} \tau} \left(\frac{1}{(1+n)(2+\rho)} (1-\tau) w_t \right)$$

$$k_{t+1} = \frac{1}{1 + \frac{1+\rho}{2+\rho} \frac{1-\alpha}{\alpha}\tau} \left(\frac{1}{(1+n)(2+\rho)} (1-\tau) w_t \right)$$

PAYG social security lowers capital accumulation because

- There is less income when young and
- You receive income when old
- Note PAYG SS can be used to restore dynamic efficiency
- Practice: Derive the analogous expressions for s_t and k_{t+1} for the fully funded system and show that that system has no effect on capital accumulation

Social security and gov. debt

- Two policy applications of OLG models:
- Social security (BF 3.2)
 1.1 Fully funded system
 1.2 PAYG system
- 2. Government debt
 - 2.1 Ricardian equivalence
 - 2.2 Equivalence between social security and government debt

Government debt

- Governments can borrow and temporarily reduce taxes to finance expenditures
- Recall Ramsey: For a given sequence of expenditures, the financing mix did not matter
- Is that true here too does Ricardian equivalence hold in OLG?

OLG with government debt

- Assume the government levies lump sum taxes and sells bonds to service outstanding debt. No government expenditures
- Government budget constraint is (go back to the original setting that allows for $\delta \in [0, 1]$)

$$L_t T_t + B_{t+1} = R_t B_t$$

or in per capita terms,

$$T_t + (1+n)b_{t+1} = R_t b_t$$

Aggregate savings? Split between capital and bonds

$$(k_{t+1} + b_{t+1})(1 + n) = s_t$$

Household problem

Households solve

$$\max u(c_{1t}) + \frac{1}{1+\rho}u(c_{2t+1})$$

$$c_{1t} + s_t = w_t - T_t$$
$$c_{2t+1} = R_{t+1}s_t$$

Assuming log utility, we can derive the Euler equation and hence savings function as before:

$$s_t = \frac{1}{2+\rho}(w_t - T_t)$$

 Household behavior does not depend on the composition of assets

Capital accumulation

Equilibrium capital accumulation is given by

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)} [w_t - T_t] - b_{t+1}$$

= $\frac{1}{(1+n)(2+\rho)} [w_t - b_t R_t + (1+n)b_{t+1}] - b_{t+1}$

- Capital accumulation is lower with government debt for 2 reasons:
 - 1. Bonds replace capital and
 - 2. Bonds require taxes to cover interest payments
- The choice of government finance matters for capital accumulation
- ▶ If $b_t = b, \forall t$, then $T_t = b(r_t n \delta)$. If the economy is dynamically efficient $(r_t > n + \delta)$, then $T_t > 0$

Ricardian equivalence

- So: equilibrium capital accumulation is not the same regardless of whether the government uses tax or deficit finance for a given sequence of expenditures
- In Ramsey, agents live forever and know that tax cuts today have to be reversed at some point in the future
 - Hence they don't spend windfall from tax cuts, they just save it - no effect on allocations of tax versus deficit finance
- In OLG, the young see a tax cut as a permanent increase in lifetime income, so they do adjust consumption
- Even though the government will have to retire the debt and raise taxes eventually in OLG too, this tax hike falls on a *future* generation
- Altruism/ bequest motives can restore Ricardian equivalence result

Social security and gov. debt

- Two policy applications of OLG models:
- Social security (BF 3.2)
 1.1 Fully funded system
 1.2 PAYG system
- 2. Government debt
 - 2.1 Ricardian equivalence
 - 2.2 Equivalence between social security and government debt

We will now show that (under specific assumptions) social security systems and government debt operate in a similar way

Assume

- 1. Log utility and CD production again
- 2. Full depreciation
- 3. Debt is a constant fraction of the capital stock $b_t = \gamma k_t$
- Then we can obtain a closed form expression for s_t and k_{t+1} same steps as in Social Security example

$$k_{t+1} = \frac{1}{(1+n)(2+\rho)}[w_t - b_t r_t - (1+n)b_{t+1}] - b_{t+1}$$

$$\begin{aligned} k_{t+1} &= \frac{1}{(1+n)(2+\rho)} [w_t - b_t r_t - (1+n)b_{t+1}] - b_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma k_t (\alpha k_t^{\alpha-1}) - (1+n)\gamma k_{t+1}] - \gamma k_{t+1} \end{aligned}$$

$$\begin{aligned} k_{t+1} &= \frac{1}{(1+n)(2+\rho)} [w_t - b_t r_t - (1+n)b_{t+1}] - b_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma k_t (\alpha k_t^{\alpha-1}) - (1+n)\gamma k_{t+1}] - \gamma k_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma \alpha k_t^{\alpha}] - \frac{1}{2+\rho} \gamma k_{t+1} - \gamma k_{t+1} \end{aligned}$$

$$\begin{aligned} k_{t+1} &= \frac{1}{(1+n)(2+\rho)} [w_t - b_t r_t - (1+n)b_{t+1}] - b_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma k_t (\alpha k_t^{\alpha-1}) - (1+n)\gamma k_{t+1}] - \gamma k_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma \alpha k_t^{\alpha}] - \frac{1}{2+\rho} \gamma k_{t+1} - \gamma k_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} \left(w_t - \gamma \frac{\alpha}{1-\alpha} w_t \right) - \frac{1+\rho}{2+\rho} \gamma k_{t+1} \end{aligned}$$

$$\begin{split} k_{t+1} &= \frac{1}{(1+n)(2+\rho)} [w_t - b_t r_t - (1+n)b_{t+1}] - b_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma k_t (\alpha k_t^{\alpha-1}) - (1+n)\gamma k_{t+1}] - \gamma k_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} [w_t - \gamma \alpha k_t^{\alpha}] - \frac{1}{2+\rho} \gamma k_{t+1} - \gamma k_{t+1} \\ &= \frac{1}{(1+n)(2+\rho)} \left(w_t - \gamma \frac{\alpha}{1-\alpha} w_t \right) - \frac{1+\rho}{2+\rho} \gamma k_{t+1} \\ &= \frac{1}{1+\frac{1+\rho}{2+\rho} \gamma} \left(\frac{1}{(1+n)(2+\rho)} \left(1 - \gamma \frac{\alpha}{1-\alpha} \right) w_t \right) \end{split}$$

With government debt

$$k_{t+1} = \frac{1}{1+\frac{1+\rho}{2+\rho}\gamma} \left(\frac{1}{(1+n)(2+\rho)} \left(1-\gamma\frac{\alpha}{1-\alpha}\right) w_t\right)$$

With PAYG social security

$$k_{t+1} = \frac{1}{1 + \frac{1+\rho}{2+\rho} \frac{1-\alpha}{\alpha} \tau} \left(\frac{1}{(1+n)(2+\rho)} (1-\tau) w_t \right)$$

These expressions are equivalent for

$$\gamma \frac{\alpha}{1-\alpha} = \tau$$

- Government debt can have the same effects as PAYG social security
 - Social security lowers savings due to contributions and benefits
 - Debt crowds out capital due to new issuance and debt service