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PS10, Ex. 1 (A): Asymmetric values
(second-price sealed bid auction)



PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?
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PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?

Step 1: Recall the argument in PS9, Ex. 3.c.

3



PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?

Step 1: Recall the argument in PS9, Ex. 3.c.

i. Suppose player 2 bids his
valuation: b2(v2) = v2. Write
down the expected payoffs to
player 1 from bidding b1.
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PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?

Step 1: Recall the argument in PS9, Ex. 3.c.

i. Suppose player 2 bids his
valuation: b2(v2) = v2. Write
down the expected payoffs to
player 1 from bidding b1.

ii. Using your previous answer,
argue that there is a symmetric
Bayesian Nash Equilibrium
(BNE) in which both players
bid their valuation.

(i) The expected payoffs of P1 given b2:

u1(b1, b2) =

{
v1 − b2 if b1 > b2
(v1 − b2)/2 if b1 = b2
0 if b1 < b2
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PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?

Step 1: Recall the argument in PS9, Ex. 3.c.

i. Suppose player 2 bids his
valuation: b2(v2) = v2. Write
down the expected payoffs to
player 1 from bidding b1.

ii. Using your previous answer,
argue that there is a symmetric
Bayesian Nash Equilibrium
(BNE) in which both players bid
their valuation.

Step 2: How is this result affected by the
distribution of the bidder’s values?

(i) The expected payoffs of P1 given b2:

u1(b1, b2) =

{
v1 − b2 if b1 > b2
(v1 − b2)/2 if b1 = b2
0 if b1 < b2

(ii) P1 wins: Payoff is independent of b1
unless b1 < b2, in which case P1 no
longer wins, thus, gets zero payoff.
P1 looses: Payoff is independent of
b1 unless b1 > b2, in which case P1
wins instead but bids more than her
evaluation and gets negative payoff.
i.e. there is no incentive to deviate
from BNE = (b∗1 , b∗2 ) = {(v1, v2)}.
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PS10, Ex. 1 (A): Asymmetric values (second-price sealed bid auction)

Suppose there are two bidders who have private but asymmetric values. In particular,
v1 ∼ U(0, 1) and v2 ∼ U(0, 2). Suppose the auction format is second-price sealed bid.
When the values are private and symmetric, it is a weakly dominant strategy to bid
one’s value. Is this still true when the values are asymmetric?

Step 1: Recall the argument in PS9, Ex. 3.c.

i. Suppose player 2 bids his
valuation: b2(v2) = v2. Write
down the expected payoffs to
player 1 from bidding b1.

ii. Using your previous answer,
argue that there is a symmetric
Bayesian Nash Equilibrium
(BNE) in which both players bid
their valuation.

Step 2: How is this result affected by the
distribution of the bidder’s values?

(i) The expected payoffs of P1 given b2:

u1(b1, b2) =

{
v1 − b2 if b1 > b2
(v1 − b2)/2 if b1 = b2
0 if b1 < b2

(ii) P1 wins: Payoff is independent of b1
unless b1 < b2, in which case P1 no
longer wins, thus, gets zero payoff.
P1 looses: Payoff is independent of
b1 unless b1 > b2, in which case P1
wins instead but bids more than her
evaluation and gets negative payoff.
i.e. there is no incentive to deviate
from BNE = (b∗1 , b∗2 ) = {(v1, v2)}.

2: The result is independent of the
distributions, thus it’s still a
best-response to bid one’s value. 7



PS10, Ex. 2 (A): Crimea Through a
Game-Theory Lens



PS10, Ex. 2 (A): Crimea Through a Game-Theory Lens

Read through the New York Times article Crimea Through a Game-Theory Lens by
Tyler Cowen (co-author of the popular economics blog Marginal Revolution). Try to
think about how you would set up models to describe the situations he writes about.
(This exercise is just for reflection, no answer will be provided).
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PS10, Ex. 3 (A): The ’Lemons’
model (Perfect Bayesian Equilibrium)



PS10, Ex. 3 (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Consider the The ’Lemons’ model of Akerlof. Suppose that used cars come in two
types: high-quality “beauties” and low-quality “lemons”. Lemon-owners are willing to
sell for $800 but Beauty-owners will not sell for anything less than $2000. Buyers will
pay up to $1200 for a lemon and up to $2400 for a beauty.

(a) Describe what would happen in the used-car market if buyers can distinguish
between beauties and lemons.

(b) What would happen if buyers cannot do so, and know that half of all used cars
are lemons? Draw this as a dynamic game of incomplete information, where
nature chooses the type of the car, the seller observes this and sets a price (any
positive real number) and the buyer decides whether to buy or not.

(c) Find a Perfect Bayesian Equilibrium of this model.

”In US English, a lemon is a vehicle (often new) that turns out to have several
manufacturing defects affecting its safety, value or utility.” (Source: Wikipedia)
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PS10, Ex. 3.a (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Consider the The ’Lemons’ model of Akerlof. Suppose that used cars come in two
types: high-quality “beauties” and low-quality “lemons”. Lemon-owners are willing to
sell for $800 but Beauty-owners will not sell for anything less than $2000. Buyers will
pay up to $1200 for a lemon and up to $2400 for a beauty.

(a) Describe what would happen in the used-car market if buyers can distinguish
between beauties and lemons.

If buyers can distinguish between beauties and lemons, they would be traded on two
separate markets with prices within [800, 1200] and [2000, 2400] respectively.
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PS10, Ex. 3.b (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Consider the The ’Lemons’ model of Akerlof. Suppose that used cars come in two
types: high-quality “beauties” and low-quality “lemons”. Lemon-owners are willing to
sell for $800 but Beauty-owners will not sell for anything less than $2000. Buyers will
pay up to $1200 for a lemon and up to $2400 for a beauty.
(b) What would happen if buyers cannot do so, and know that half of all used cars

are lemons? Draw this as a dynamic game of incomplete information, where
nature chooses the type of the car, the seller observes this and sets a price (any
positive real number) and the buyer decides whether to buy or not.
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PS10, Ex. 3.b (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Consider the The ’Lemons’ model of Akerlof. Suppose that used cars come in two
types: high-quality “beauties” and low-quality “lemons”. Lemon-owners are willing to
sell for $800 but Beauty-owners will not sell for anything less than $2000. Buyers will
pay up to $1200 for a lemon and up to $2400 for a beauty.
(b) What would happen if buyers cannot do so, and know that half of all used cars

are lemons? Draw this as a dynamic game of incomplete information, where
nature chooses the type of the car, the seller observes this and sets a price (any
positive real number) and the buyer decides whether to buy or not.

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400
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PS10, Ex. 3.c (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400

(c) Find a Perfect Bayesian Equilibrium of this model.
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PS10, Ex. 3.c (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400

(c) Find a Perfect Bayesian Equilibrium of this model.

Step 1: Write up buyer’s expectation to the
car’s value given her beliefs
regarding p
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PS10, Ex. 3.c (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400

(c) Find a Perfect Bayesian Equilibrium of this model.

Step 1: Write up buyer’s expectation to the
car’s value given her beliefs
regarding p.

1. E [V ] = 1
2 1200 + 1

2 2400 = 1800
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PS10, Ex. 3.c (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400

(c) Find a Perfect Bayesian Equilibrium of this model.
Step 1: Write up buyer’s expectation to the

car’s value given her beliefs
regarding p.

Step 2: As both the seller and the buyer
know this expectation, what will
the outcome be?

1. E [V ] = 1
2 1200 + 1

2 2400 = 1800
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PS10, Ex. 3.c (A): The ’Lemons’ model (Perfect Bayesian Equilibrium)

Buy

Seller

Not buy

Seller

Beauty, p = 1
2Lemon, p = 1

2

Nature

Buyer
Buy Not buy

price price800 2400 2000 2400

(c) Find a Perfect Bayesian Equilibrium of this model.
Step 1: Write up buyer’s expectation to the

car’s value given her beliefs
regarding p.

Step 2: As both the seller and the buyer
know this expectation, what will the
outcome be?

1. E [V ] = 1
2 1200 + 1

2 2400 = 1800
2. The seller will not sell beauties for a

price below 2000. The buyer
anticipates this, thus, there will only
be a market for lemons being sold
for price ∈ [800, 1200] as 1200 is the
highest amount that the buyer is
willing to pay for a lemon.
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PS10, Ex. 4: A simple
principal-agent model of corruption
(all-pay auction)



PS10, Ex. 4: A simple principal-agent model of corruption (all-pay auction)

Suppose two lobbyists, i = 1, 2, are trying to persuade a policymaker to implement
their preferred policy by making a costly effort ei ∈ [0, 1]. The policymaker can only
implement one of the policies, and will implement the policy of the lobbyist who
makes the most effort (you can also think of the policymaker as being corrupt, and the
effort being a bribe.) The point is, that the lobbyist has to make the effort before he
learns if his policy is implemented.

The value to i of having his preferred policy implemented is vi , where vi ∼ U(0, 1)
independently (private values). The lobbyists know their own valuation, but not that
of the other lobbyist.

(a) Rewrite this as an auction. What is the difference to the auctions we have seen
so far?

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c.
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PS10, Ex. 4.a: A simple principal-agent model of corruption (all-pay auction)

Suppose two lobbyists, i = 1, 2, are trying to persuade a policymaker to implement
their preferred policy by making a costly effort ei ∈ [0, 1]. The policymaker can only
implement one of the policies, and will implement the policy of the lobbyist who
makes the most effort (you can also think of the policymaker as being corrupt, and the
effort being a bribe.) The point is, that the lobbyist has to make the effort before he
learns if his policy is implemented.

The value to i of having his preferred policy implemented is vi , where vi ∼ U(0, 1)
independently (private values). The lobbyists know their own valuation, but not that
of the other lobbyist.

(a) Rewrite this as an auction. What is the difference to the auctions we have seen
so far?

Step 1: Write up the bidders, valuations,
bids, and utilities.
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PS10, Ex. 4.a: A simple principal-agent model of corruption (all-pay auction)

Suppose two lobbyists, i = 1, 2, are trying to persuade a policymaker to implement
their preferred policy by making a costly effort ei ∈ [0, 1]. The policymaker can only
implement one of the policies, and will implement the policy of the lobbyist who
makes the most effort (you can also think of the policymaker as being corrupt, and the
effort being a bribe.) The point is, that the lobbyist has to make the effort before he
learns if his policy is implemented.

The value to i of having his preferred policy implemented is vi , where vi ∼ U(0, 1)
independently (private values). The lobbyists know their own valuation, but not that
of the other lobbyist.

(a) Rewrite this as an auction. What is the difference to the auctions we have seen
so far?

Step 1: Write up the auction with bidders,
valuations, bids, and utilities.

Step 2: How is this different from the
auctions we have seen so far?

1. Two bidders, i ∈ 1, 2.
Valuations are independently
distributed vi ∼ U(0, 1)
Bids bi ∈ [0, 1]

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj
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PS10, Ex. 4.a: A simple principal-agent model of corruption (all-pay auction)

Suppose two lobbyists, i = 1, 2, are trying to persuade a policymaker to implement
their preferred policy by making a costly effort ei ∈ [0, 1]. The policymaker can only
implement one of the policies, and will implement the policy of the lobbyist who
makes the most effort (you can also think of the policymaker as being corrupt, and the
effort being a bribe.) The point is, that the lobbyist has to make the effort before he
learns if his policy is implemented.
The value to i of having his preferred policy implemented is vi , where vi ∼ U(0, 1)
independently (private values). The lobbyists know their own valuation, but not that
of the other lobbyist.
(a) Rewrite this as an auction. What is the difference to the auctions we have seen

so far?
Step 1: Write up the auction with bidders,

valuations, bids, and utilities.
Step 2: How is this different from the

auctions we have seen so far?

1. Two bidders, i ∈ 1, 2.
Valuations are independently
distributed vi ∼ U(0, 1)
Bids bi ∈ [0, 1]

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

2. Both bidders pay their bid bi
regardless of whether they win. This
is known as an all-pay auction. 21



PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

Suppose two lobbyists, i = 1, 2, are trying to persuade a policymaker to implement
their preferred policy by making a costly effort ei ∈ [0, 1]. The policymaker can only
implement one of the policies, and will implement the policy of the lobbyist who
makes the most effort (you can also think of the policymaker as being corrupt, and the
effort being a bribe.) The point is, that the lobbyist has to make the effort before he
learns if his policy is implemented.

The value to i of having his preferred policy implemented is vi , where vi ∼ U(0, 1)
independently (private values). The lobbyists know their own valuation, but not that
of the other lobbyist.

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c.
Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

[Try to write up the cumulative distribution function (CDF) for a uniform distribution
x ∼ U(a, b), and the probability that a constant c is higher than a random draw of x.]
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

23



PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to
the equilibrium strategy.

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

P(i wins) = P(bi > bj (vj ))
= P(bi > cv2

j ), using (∗)

= P
(bi

c
> v2

j

)
= P

(√
bi
c
> vj

)

=

√
bi
c
, using CDF

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

P(i wins) = P(bi > bj (vj ))
= P(bi > cv2

j ), using (∗)

= P
(bi

c
> v2

j

)
= P

(√
bi
c
> vj

)

=

√
bi
c
, using CDF

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

E[ui (bi )|vi ] = P(i wins)vi − bi

=

√
bi
c

vi − bi , using (1)

Remember that the bid is always payed.

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

E[ui (bi )|vi ] = P(i wins)vi − bi

=

√
bi
c

vi − bi , using (1)

Remember that the bid is always payed.
Step 3: Take the first-order condition and

second-order condition with respect
to bi .

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .

δE[ui (bi )|vi ]
δbi

= δ

δbi

(√
bi
c

vi − bi

)

= δ

δbi

(√
bi√
c

vi − bi

)
= δ

δbi

(
b

1
2

i
1
√

c
vi − bi

)
= 1

2
b−

1
2

i
1
√

c
vi − 1 (∗∗)

= 1
2

1
√

bi

1
√

c
vi − 1

= 1
2
√

bi c
vi − 1

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .

δE[ui (bi )|vi ]
δbi

= δ

δbi

(√
bi
c

vi − bi

)

= δ

δbi

(√
bi√
c

vi − bi

)
= δ

δbi

(
b

1
2

i
1
√

c
vi − bi

)
= 1

2
b−

1
2

i
1
√

c
vi − 1 (∗∗)

= 1
2

1
√

bi

1
√

c
vi − 1

= 1
2
√

bi c
vi − 1

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).

Step 1: Write up bidder i ’s probability of
winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).

As the SOC is negative for all bi , vi , c > 0
bidder i maximizes expected utility for

0 = 1
2
√

bi (vi )c
vi − 1⇔

2
√

bi (vi )c = vi ⇔

22bi (vi )c = v2
i ⇔

bi (vi ) = 1
4c

v2
i

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)

4. bi (vi ) = 1
4c v2

i
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).

As the SOC is negative for all bi , vi , c > 0
bidder i maximizes expected utility for

0 = 1
2
√

bi (vi )c
vi − 1⇔

2
√

bi (vi )c = vi ⇔

22bi (vi )c = v2
i ⇔

bi (vi ) = 1
4c

v2
i

Step 5: Set this equal to (∗) to find c∗:

c∗v2
i = 1

4c∗
v2

i

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)

4. bi (vi ) = 1
4c v2

i
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).
Step 5: Set this equal to (∗) to find c∗:

c∗v2
i = 1

4c∗
v2

i ⇔

c∗ = 1
4c∗
⇔

2c∗ = 1
4
⇔

c∗ = 1
2

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)

4. bi (vi ) = 1
4c v2

i

5. c∗ = 1
2
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).
Step 5: Set this equal to (∗) to find c∗:

c∗v2
i = 1

4c∗
v2

i ⇔

c∗ = 1
4c∗
⇔

2c∗ = 1
4
⇔

c∗ = 1
2

Step 6: Write up the equilibrium bidding
strategy.

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)

4. bi (vi ) = 1
4c v2

i

5. c∗ = 1
2
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PS10, Ex. 4.b: A simple principal-agent model of corruption (all-pay auction)

(b) Check that there is a symmetric Bayesian Nash Equilibrium of the type
bi (vi ) = cv2

i (∗), and find c. Values are independently distributed vi ∼ U(0, 1).
Step 1: Write up bidder i ’s probability of

winning the auction if j sticks to the
equilibrium strategy.

Step 2: Write up bidder i ’s expected payoff
from bidding bi conditional on vi .

Step 3: Take the FOC and SOC wrt. bi .
Step 4: Solve to find bi (vi ).
Step 5: Set this equal to (∗) to find c∗:

c∗v2
i = 1

4c∗
v2

i ⇔

c∗ = 1
4c∗
⇔

2c∗ = 1
4
⇔

c∗ = 1
2

Step 6: Write up the equilibrium bidding
strategy.

Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(c > x) = c−a
b−a

Results so far:

ui (bi , bj ) =

{
vi − bi if bi > bj
vi
2 − bi if bi = bj
−bi if bi < bj

1. P(i wins) =
√

bi/c (1)

2. E[ui (bi )|vi ] =
√

bi/c · vi − bi

3. FOC: 1
2
√

bi c
vi − 1 = 0

SOC: − 1
4 b−

3
2

i
1√
c vi = 0, using (∗∗)

4. bi (vi ) = 1
4c v2

i

5. c∗ = 1
2

6. BNE: b∗i (vi ) = 1
2 v2

i
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PS10, Ex. 5: Extensive form games
(Perfect Bayesian Equilibria)



PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy Nash, subgame-perfect, and perfect
Bayesian equilibria.

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

[Try to list the four requirements for a Perfect Bayesian Equilibrium (PBE).]
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy Nash, subgame-perfect, and perfect
Bayesian equilibria.

Derive the normal-form game.

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path. 38



PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: Find all PSNE in the bi-matrix. L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE:

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE: How many proper subgames are

there?

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE:

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2 that
secure the equilibrium/equilibria.

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively.

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

P2 is indifferent between L′ and R′ if
E[u2(L′)|p] = E[u2(R′)|p]⇒ p = 1− p ⇒ p = 1/2

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

R2: In each information set, players have
beliefs about where they are.

R2: Sequential rationality: At each
information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
Write up the best responses of player 2.
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

P2 is indifferent between L′ and R′ if
E[u2(L′)|p] = E[u2(R′)|p]⇒ p = 1− p ⇒ p = 1/2

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

R2: Players have beliefs.
R2: Sequential rationality.
R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
Write up the best responses of player 1:

BR1(L′) = L, with u1(L, L′) = 4
BR1(R′) = R, with u1(R,R′) = 2

Find the PBE s.t. requirements 1-4 by
analyzing the intervals p ∈

[
0, 1

2

]
,
[

1
2 , 1
]
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

P2 is indifferent between L′ and R′ if
E[u2(L′)|p] = E[u2(R′)|p]⇒ p = 1/2

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Write up the best responses of player 1:
BR1(L′) = L, with u1(L, L′) = 4

BR1(R′) = R, with u1(R,R′) = 2

p ∈
[

0, 1
2
]

: P2 plays R′ if she expects P1
to play L with probability p ≤ 1

2 . This is
a PBE if P1 plays R.
p ∈
[

1
2 , 1
]

: ?
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

P2 is indifferent between L′ and R′ if
E[u2(L′)|p] = E[u2(R′)|p]⇒ p = 1/2

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Write up the best responses of player 1:
BR1(L′) = L, with u1(L, L′) = 4

BR1(R′) = R, with u1(R,R′) = 2

p ∈
[

0, 1
2
]

: P2 plays R′ if she expects P1
to play L with probability p ≤ 1

2 . This is
a PBE if P1 plays R.
p ∈
[ 1

2 , 1
]

: P2 plays L′ if she expects P1
to play L with probability p ≥ 1

2 . This is
a PBE if P1 plays L and P2 expects this
with beliefs p = 1.
Write up the set of PBE. 49



PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ R’
L [p] 4, 1 0, 0
M [1-p] 3, 0 0, 1
R 2, 2 2, 2

PSNE: {(L, L′); (R,R′)}
SPNE = PSNE, due to no proper subgames.

PBE: Find the pure-strategy PBE
including the beliefs of player 2.

If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1−p] to each.
Given her beliefs, find P2’s expected
utility of playing L′ and R′ respectively:
E[u2(L′)|p] = 1 · p + 0 · [1− p] = p

E[u2(R′)|p] = 0 · p + 1 · [1− p] = 1− p

P2 is indifferent between L′ and R′ if
E[u2(L′)|p] = E[u2(R′)|p]⇒ p = 1/2

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Write up the best responses of player 1:
BR1(L′) = L, with u1(L, L′) = 4

BR1(R′) = R, with u1(R,R′) = 2

p ∈
[

0, 1
2
]

: P2 plays R′ if she expects P1
to play L with probability p ≤ 1

2 . This is
a PBE if P1 plays R.
p ∈
[ 1

2 , 1
]

: P2 plays L′ if she expects P1
to play L with probability p ≥ 1

2 . This is
a PBE if P1 plays L and P2 expects this
with beliefs p = 1.
PBE =

{
(L, L′), p = 1 ; (R, R′), p ≤ 1/2

}
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.
If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1-p] to each.

Bonus: Explain why {(L, L′), p ≥ 1
2} isn’t a

PBE but {(R, R′), p ≤ 1/2} is?
L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Write up the best responses of player 1:
BR1(L′) = L, with u1(L, L′) = 4

BR1(R′) = R, with u1(R,R′) = 2

p ∈
[

0, 1
2
]

: P2 plays R′ if she expects P1
to play L with probability p ≤ 1

2 . This is
a PBE if P1 plays R.
p ∈
[ 1

2 , 1
]

: P2 plays L′ if she expects P1
to play L with probability p ≥ 1

2 . This is
a PBE if P1 plays L and P2 expects this
with beliefs p = 1.
PBE =

{
(L, L′), p = 1 ; (R,R′), p ≤ 1/2

}
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PS10, Ex. 5.a: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.a in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.
If P1 did not play R, P2 does not know
whether the game has reached the
information set following L or R. She
assigns probabilities p and [1-p] to each.

Bonus: Explain why {(L, L′), p ≥ 1/2} isn’t
a PBE but {(R,R′), p ≤ 1/2} is?

(L, L′) is a NE for p ≥ 1
2 . However, to be

a PBE it is required that beliefs are
Bayesian, i.e. consistent with the
equilibrium. In the equilibrium L is played
with probability p = 1 which should be
the believed as well (updating beliefs).
On the contrary, if P2 plays R′, P1 would
want to play R. Off the equilibrium path,
P1 is indifferent between L and M when
P2 plays R′, i.e. any off-equilibrium path
beliefs of p ∈ [0, 1] would be rational, but
only p ≤ 1

2 is consistent with P2
preferring R′.

L′

(0,0)

[p]

R′ L′

[1− p]

R′

ML

1

(0,1)(4,1)

(2,2)

(3,0)

R

2

Write up the best responses of player 1:
BR1(L′) = L, with u1(L, L′) = 4

BR1(R′) = R, with u1(R,R′) = 2

p ∈
[

0, 1
2
]

: P2 plays R′ if she expects P1
to play L with probability p ≤ 1

2 . This is
a PBE if P1 plays R.
p ∈
[ 1

2 , 1
]

: P2 plays L′ if she expects P1
to play L with probability p ≥ 1

2 . This is
a PBE if P1 plays L and P2 expects this
with beliefs p = 1.
PBE =

{
(L, L′), p = 1 ; (R,R′), p ≤ 1/2

}
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy Nash, subgame-perfect, and perfect
Bayesian equilibria.

Derive the normal-form game.

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE:

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively.

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

Draw the expected utility of each choice
as functions of p.

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′

Requirements for a PBE:
R2: In each information set, players have

beliefs about where they are.
R2: Sequential rationality: At each

information set the action taken is
optimal given the player’s belief at
the information set and the other
player’s subsequent strategies.

R3: Bayesian beliefs on equilibrium path.
R4: Bayesian beliefs off equilibrium path.
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

Using the diagram and the expected
utility functions, find the intersections
p′ and p′′.

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

P2 is indifferent at p′ and p′′:
E[u2(M′)]=E[u2(R′)]⇒ 2=3-3p ⇒ p′=1/3
E[u2(L′)]=E[u2(M′)]⇒ 3p=2⇒ p′′=2/3

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

P2 is indifferent at p′ and p′′:
E[u2(M′)]=E[u2(R′)]⇒ 2=3-3p ⇒ p′=1/3
E[u2(L′)]=E[u2(M′)]⇒ 3p=2⇒ p′′=2/3

Writing up the BR1’s, are they
consistent with the beliefs of P2 for the
relevant interval [0, p′], [p′, p′′], [p′′, 1]?

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE: Now, write up the PBE.
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

P2 is indifferent at p′ and p′′:
E[u2(M′)]=E[u2(R′)]⇒ 2=3-3p ⇒ p′=1/3
E[u2(L′)]=E[u2(M′)]⇒ 3p=2⇒ p′′=2/3
p ≤ 1/3: BR1(R′) = L→ P2 deviates to L′

p∈
[ 1

3 ,
2
3
]

: BR1(M′) = R → no deviation

p ≥ 2/3: BR1(L′) = M → P2 deviates to R′

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′
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PS10, Ex. 5.b: Extensive form games (Perfect Bayesian Equilibria)

Exercise 4.1.b in Gibbons (p. 245). In the following extensive-form games, derive the
normal-form game and find all the pure-strategy NE, SPNE, and PBE.

L’ M’ R’
L [p] 1, 3 1, 2 4, 0
M [1-p] 4, 0 0, 2 3, 3
R 2, 4 2, 4 2, 4

PSNE: {(R,M′)}
SPNE = PSNE, due to no proper subgames.

PBE:
{

(R, M′), p ∈
[

1
3 , 2

3

]}
Given her beliefs, find P2’s expected
utility of L′, M′, and R′ respectively:

E[u2(L′)|p] = 3p + 0[1− p] = 3p

E[u2(M′)|p] = 2p + 2[1− p] = 2
E[u2(R′)|p] = 0p + 3[1− p] = 3− 3p

P2 is indifferent at p′ and p′′:
E[u2(M′)]=E[u2(R′)]⇒ 2=3-3p ⇒ p′=1/3
E[u2(L′)]=E[u2(M′)]⇒ 3p=2⇒ p′′=2/3
p ≤ 1/3: BR1(R′) = L→ P2 deviates to L′

p∈
[ 1

3 ,
2
3
]

: BR1(M′) = R → no deviation

p ≥ 2/3: BR1(L′) = M → P2 deviates to R′

L′

(4,0)

[p]

R′ L′

[1− p]

R′

ML

1

(3,3)(1,3)

(2,4)

(4,0)

R

2

(1,2) (0,2)

M′ M′
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PS10, Ex. 6: Extensive form game
(mixed-strategy Perfect Bayesian
Equilibrium)



PS10, Ex. 6: Extensive form game (mixed-strategy PBE)

Exercise 4.2 in Gibbons (p. 245). (i) Show that there does not exist a pure-strategy
PBE in the following extensive-form game. (ii) What is the mixed-strategy PBE?

L′

(0,1)

[p]

R′ L′

[1− p]

R′

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (i): Extensive form game (mixed-strategy PBE)

(i) Show that there does not exist a pure-strategy perfect Bayesian equilibrium.

L’ R’
L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

L′

(0,1)

[p]

R′ L′

[1− p]

R′

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2

66



PS10, Ex. 6 (i): Extensive form game (mixed-strategy PBE)

(i) Show that there does not exist a pure-strategy perfect Bayesian equilibrium.

L’ R’
L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

L′

(0,1)

[p]

R′ L′

[1− p]

R′

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (i): Extensive form game (mixed-strategy PBE)

(i) Show that there does not exist a pure-strategy perfect Bayesian equilibrium.

L’ R’
L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

From the bi-matrix it is clear there is no
equilibrium in pure strategies as one of
the players would always want to deviate.

L′

(0,1)

[p]

R′ L′

[1− p]

R′

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ R’

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

L′

(0,1)

[p]

R′ L′

[1− p]

R′

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

Draw the expected utility of each choice
as functions of q.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2

72



PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

Using the diagram and the expected
utility functions, find the intersections
q′ and q′′.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Assume that P2 plays L′ and R′ with
probability q and 1− q respectively.
Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3

Writing up the BR2’s, are they
consistent with the beliefs of P1 for the
relevant interval [0, q′], [q′, q′′], [q′′, 1]?

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2

76



PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3

q ≤ 1/3: BR2(M)=L′ → P1 deviates to L

q∈
[ 1

3 ,
2
3
]

: P1 plays R → does P2 mix?

q ≥ 2/3: BR2(L)=R′ → P2 deviates to M

Find the beliefs p such that P2 is
indifferent between L′ and R′.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3
q ≤ 1/3: BR2(M)=L′ → P1 deviates to L

q∈
[ 1

3 ,
2
3
]

: P1 plays R → does P2 mix?

q ≥ 2/3: BR2(L)=R′ → P2 deviates to M

P2 is indifferent if she believes that:
E[u2(L′)]=E[u1(R′)]⇒ 0p+1[1-p]=1p+0[1-p]⇒ 1-p=p ⇒ p∗=1/2

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

Given his beliefs, find P1’s expected
utility of L, M, and R respectively:

E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3
q ≤ 1/3: BR2(M)=L′ → P1 deviates to L

q∈
[ 1

3 ,
2
3
]

: P1 plays R → does P2 mix?

q ≥ 2/3: BR2(L)=R′ → P2 deviates to M

P2 is indifferent if she believes that:
E[u2(L′)]=E[u1(R′)]⇒ 1-p=p ⇒ p∗=1/2

Is p = 1
2 compatible with q ∈

[
1
3 , 2

3

]
?

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

P1’s expected utility of L, M, and R:
E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3
q ≤ 1/3: BR2(M)=L′ → P1 deviates to L

q∈
[ 1

3 ,
2
3
]

: P1 plays R → does P2 mix?

q ≥ 2/3: BR2(L)=R′ → P2 deviates to M

P2 is indifferent if she believes that:
E[u2(L′)]=E[u1(R′)]⇒ 1-p=p ⇒ p∗=1/2

q ∈
[ 1

3 ,
2
3
]

: P1 plays R. p = 1
2 : P2 mixes.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2

If compatible, write up the
mixed-strategy PBE.
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PS10, Ex. 6 (ii): Extensive form game (mixed-strategy PBE)

(ii) What is the mixed-strategy PBE?
L’ [q] R’ [1-q]

L [p] 3, 0 0, 1
M [1-p] 0, 1 3, 0
R 2, 2 2, 2

P1’s expected utility of L, M, and R:
E[u1(L)|q] = 3q + 0[1− q] = 3q

E[u1(M)|q] = 0q + 3[1− q] = 3− 3q

E[u1(R)] = 2

P1 is indifferent at q′ and q′′:
E[u1(M)]=E[u1(R)]⇒ 3-3q=2⇒ q′=1/3
E[u1(L)]=E[u1(R)]⇒ 3q=2⇒ q′′=2/3
q ≤ 1/3: BR2(M)=L′ → P1 deviates to L

q∈
[ 1

3 ,
2
3
]

: P1 plays R → does P2 mix?

q ≥ 2/3: BR2(L)=R′ → P2 deviates to M

P2 is indifferent if she believes that:
E[u2(L′)]=E[u1(R′)]⇒ 1-p=p ⇒ p∗=1/2

q ∈
[ 1

3 ,
2
3
]

: P1 plays R. p = 1
2 : P2 mixes.

L′ [q]

(0,1)

[p]

R′ [1-q] L′ [q]

[1− p]

R′ [1-q]

ML

1

(3,0)(3,0)

(2,2)

(0,1)

R

2

PBE =
{(

R, q ∈
[1

3
,

2
3

])
, p =

1
2

}
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PS10, Ex. 7: Dissolving a
partnership (Perfect Bayesian
Equilibria)



PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative
distribution function (CDF) for a
uniform distribution x ∼ U(a, b),
and the probability that a random
draw of x is lower than a constant
c.
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

Step 2: Write up P1’s expected utility from
naming the price p.

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

Step 2: Write up P1’s expected utility from
naming the price p.

E[u1(v1, p)] = P[P2 buys](p − v1)s + P[P2 sells](v1 − p)(1− s)

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

Step 2: P1’s expected utility from price p:
E[u1(v1, p)] = P[P2 buys](p − v1)s + P[P2 sells](v1 − p)(1− s)

= P[v2 > p](p − v1)s + P[v2 < p](v1 − p)(1− s)
= (1− P[v2 < p])(p − v1)s + P[v2 < p](v1 − p)(1− s)

=
(

1− p − 0
1− 0

)
(p − v1)s + p − 0

1− 0
(v1 − p)(1− s), using the CDF

= (1− p) (p − v1)s + p(v1 − p)(1− s)
= ps − v1s−p2s + pv1s + pv1−pv1s − p2 + p2s

= ps − v1s + pv1 − p2 (∗)

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a

2. E[u1(v1, p)] = ps−v1s+pv1−p2 (∗)
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

Step 2: P1’s expected utility from price p.
Step 3: Find the PBE price p∗ by

maximizing P1’s expected utility
(∗) with respect to the price p.

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a

2. E[u1(v1, p)] = ps−v1s+pv1−p2 (∗)
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PS10, Ex. 7: Dissolving a partnership (Perfect Bayesian Equilibria)

Difficult. Exercise 4.10 in Gibbons (p. 250). Two partners must dissolve their
partnership. Partner 1 currently owns share s of the partnership, partner 2 owns share
1− s. The partners agree to play the following game: partner 1 names a price, p, for
the whole partnership, and partner 2 then chooses either to buy l’s share for ps or to
sell his or her share to 1 for p(1− s). Suppose it is common knowledge that the
partners’ valuations for owning the whole partnership are independently and uniformly
distributed on [0, 1], but that each partner’s valuation is private information. What is
the perfect Bayesian equilibrium?

Step 1: Write up the cumulative distribution
function (CDF) for a uniform
distribution x ∼ U(a, b), and the
probability that a random draw of x
is lower than a constant c.

Step 2: P1’s expected utility from price p.
Step 3: Find the PBE price p∗ by

maximizing P1’s expected utility (∗)
with respect to the price p.

1. Standard result for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a

2. E[u1(v1, p)] = ps−v1s+pv1−p2 (∗)
3. As the quadratic term is negative,

(∗) is a parabola which opens
downward from the vertex p∗.
I.e. p∗ is the maximum of (∗), thus:

δE[u1(v1, p)]
δp

= 0⇒

s + v1 − 2p = 0⇔
s + v1 = 2p ⇔

p∗ = s + v1
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