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PS11, Ex. 1 (A): Signaling effect of
the GED education program



PS11, Ex. 1 (A): Signaling effect of the GED education program

Does signaling work? Read the article by Tyler, Murnane and Willett and think about
their results. What is their hypothesis for why they do not find an effect for minority
groups? Come up with an example of an education program that has mostly signaling
value in your country.

(This is a reflection question, no answer will be provided).
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PS11, Ex. 2 (A):
Asymmetric/incomplete information
(PBE)



PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Consider the uniform distribution
x ∼ U(a, b). Use the cumulative
distribution function (CDF) to
write up the probability that a
random draw of x is lower than a
constant c. Use the mean to write
up the expected value of a random
draw of x where x is lower than a
constant c ∈ [a, b].
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Consider the uniform distribution
x ∼ U(a, b). Use the cumulative
distribution function (CDF) to write
up the probability that a random
draw of x is lower than a constant c.
Use the mean to write up the
expected value of a random draw of
x where x is lower than a constant
c ∈ [a, b].

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)
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Step 1: Consider the uniform distribution
x ∼ U(a, b). Use the cumulative
distribution function (CDF) to write
up the probability that a random
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x where x is lower than a constant
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response).
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Consider the uniform distribution
x ∼ U(a, b). Use the cumulative
distribution function (CDF) to write
up the probability that a random
draw of x is lower than a constant c.
Use the mean to write up the
expected value of a random draw of
x where x is lower than a constant
c ∈ [a, b].

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
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x where x is lower than a constant
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Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).
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1. Standard results for x ∼ U(a, b) :
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b−a (†)

Mean: µ = a+b
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
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x ∼ U(a, b). Use the cumulative
distribution function (CDF) to write
up the probability that a random
draw of x is lower than a constant c.
Use the mean to write up the
expected value of a random draw of
x where x is lower than a constant
c ∈ [a, b].

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem:
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p
P[vs < p]E[vb − p|vs < p]

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

9

https://www.jstor.org/stable/1911195
https://www.jstor.org/stable/1911195


PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem:
max

p
P[vs < p]E[vb − p|vs < p]

= max
p

p − 0
1− 0

E[kvs − p|vs < p] using (†)

= max
p

p (kE[vs < p]− p)

= max
p

p
(

k
0 + p

2
− p
)

using (‡)

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

3. max
p

ub(p) = max
p

p2
(k

2
− 1
)
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Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem:
max

p
P[vs < p]E[vb − p|vs < p]

= max
p

p − 0
1− 0

E[kvs − p|vs < p] using (†)

= max
p

p (kE[vs < p]− p)

= max
p

p
(

k
0 + p

2
− p
)

using (‡)

Step 4: Take the first-order condition wrt p

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)
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{

Sell if p ≥ vs
Don′t if p < vs

3. max
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(k

2
− 1
)
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem.
Step 4: Take the first-order condition wrt. p:

δub(p)
δp

= 0

2p
(k

2
− 1
)

= 0 (take the SOC)

2p
k
2

= 2p

p
k
2

= p

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

3. max
p

ub(p) = max
p

p2
(k

2
− 1
)

4. FOC: p k
2 = p

SOC: What is the functional form
of ub(p) for different values of k?
E.g. is the buyer’s utility a linear,
concave, or convex function of p? 12
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Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem.
Step 4: Take the first-order condition wrt. p:
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δp

= 0

2p
(k

2
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)
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2p
k
2
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= p
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p

ub(p) = max
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p2
(k

2
− 1
)

4. FOC: p k
2 = p

SOC: k − 2

{
< 0, k ∈ (1, 2) ⇒ concave
= 0, k = 2 ⇒ flat
> 0, k > 2 ⇒ convex
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PS11, Ex. 2 (A): Asymmetric/incomplete information (PBE)

Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem.
Step 4: Take the first-order and second-order

condition wrt. p.
Step 5: Maximize buyer’s utility for k < 2.
Step 6: Maximize buyer’s utility for k > 2.

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

3. max
p

ub(p) = max
p

p2
(k

2
− 1
)

4. FOC: p k
2 = p

SOC: k − 2

{
< 0, k ∈ (1, 2) ⇒ concave
= 0, k = 2 ⇒ flat
> 0, k > 2 ⇒ convex

5. k ∈ (1, 2): FOC, SOC ⇒ p∗ = 0
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Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem.
Step 4: Take the FOC and SOC wrt. p.
Step 5: Maximize buyer’s utility for k < 2.
Step 6: Maximize buyer’s utility for k > 2.
Step 7: Looking at the seller’s strategy, will

trade occur when k > 2?
What about k ∈ (1, 2)? Have we
seen something similar before?

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

3. max
p

ub(p) = max
p

p2
(k

2
− 1
)

4. FOC: p k
2 = p

SOC: k − 2

{
< 0, k ∈ (1, 2) ⇒ concave
= 0, k = 2 ⇒ flat
> 0, k > 2 ⇒ convex

5. k ∈ (1, 2): FOC, SOC ⇒ p∗ = 0
6. k > 2: max ub : p →∞⇒ p∗∗ = 1 16
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Exercise 4.11 in Gibbons (p. 250). Difficult. A buyer and a seller have valuations vb
and vs . It is common knowledge that there are gains from trade (i.e., that vb > vs ),
but the size of the gains is private information, as follows: the seller’s valuation is
uniformly distributed on [0,1]; the buyer’s valuation vb = kvs , where k > 1 is common
knowledge; the seller knows vs (and hence vb) but the buyer does not know vb (and
hence vs ). Suppose the buyer makes a single offer, p, which the seller either accepts
or rejects. What is the perfect Bayesian equilibrium when k < 2? When k > 2? (See
Samuelson 1984.)

Step 1: Use the CDF to write up P(x < c).
Use the mean to write up E(x < c).

Step 2: The buyer offers a price p. Write up
the seller’s strategy (best response).

Step 3: Write out the buyer’s problem.
Step 4: Take the FOC and SOC wrt. p.
Step 5: Maximize buyer’s utility for k < 2.
Step 6: Maximize buyer’s utility for k > 2.
Step 7: k > 2: As vs ∈ [0, 1], seller will

always accept the price p∗∗ = 1.
k ∈ (1, 2): Seller will not accept if
vs > 0, though trade would benefit
both under perfect information.
Similar to Akerlof’s ’Lemons’.

1. Standard results for x ∼ U(a, b) :
CDF: F (x) = x−a

b−a ⇒ P(x < c) = c−a
b−a (†)

Mean: µ = a+b
2 ⇒ E(x < c) = a+c

2 (‡)

2. Ss (p, vs ) =
{

Sell if p ≥ vs
Don′t if p < vs

3. max
p

ub(p) = max
p

p2
(k

2
− 1
)

4. FOC: p k
2 = p

SOC: k − 2

{
< 0, k ∈ (1, 2) ⇒ concave
= 0, k = 2 ⇒ flat
> 0, k > 2 ⇒ convex

5. k ∈ (1, 2): FOC, SOC ⇒ p∗ = 0
6. k > 2: max ub : p →∞⇒ p∗∗ = 1 18

https://www.jstor.org/stable/1911195
https://www.jstor.org/stable/1911195


Signaling games in general



PS11: Signaling games in general

Players:
• 2 players: Sender (S) and receiver

(R). E.g. firm and consumer, or
employer and employee (Spence).

Timing:
1. Nature chooses the sender’s type

from T = {t1, ...}.
2. S: The sender realizes her type and

sends a signal from M = {m1, ...},
typically either L (left) or R (right).

3. R: The receiver observes m (but not
the type t!) and forms his beliefs:

µ(t1|L) = p and µ(t1|R) = q
Consequently, for S having two
possible types:
µ(t2|L) = 1− p and µ(t2|R) = 1− q

4. R: The receiver chooses an action
from A = {a1, ...}, e.g. up or down.

5. Payoffs are realized.
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L R
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u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]
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PS11: Signaling games in general

Players:
• 2 players: Sender (S) and receiver

(R). E.g. firm and consumer, or
employer and employee (Spence).

Timing:
1. Nature chooses the sender’s type

from T = {t1, ...}.
2. S: The sender realizes her type and

sends a signal from M = {m1, ...},
typically either L (left) or R (right).

3. R: The receiver observes m (but not
the type t!) and forms his beliefs:

p = µ(t1|L) and q = µ(t1|R)
Consequently, for S having two
possible types:
1− p = µ(t2|L) and 1− q = µ(t2|R)

4. R: The receiver chooses an action
from A = {a1, ...}, e.g. up or down.

5. Payoffs are realized.
Four possible equilibria for two types:

• Pooling on L or pooling on R.
• Separating: t1 plays L and t2 plays R

or the other way around.
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L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]
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PS11: Signaling games in general

Players:
• 2 players: Sender (S) and receiver

(R). E.g. firm and consumer, or
employer and employee (Spence).

Timing:
1. Nature chooses the sender’s type

from T = {t1, ...}.
2. S: The sender realizes her type and

sends a signal from M = {m1, ...},
typically either L (left) or R (right).

3. R: The receiver observes m (but not
the type t!) and forms his beliefs:

p = µ(t1|L) and q = µ(t1|R)
Consequently, for S having two
possible types:
1− p = µ(t2|L) and 1− q = µ(t2|R)

4. R: The receiver chooses an action
from A = {a1, ...}, e.g. up or down.

5. Payoffs are realized.
Four possible equilibria for two types:

• Pooling on L or pooling on R.
• Separating: t1 plays L and t2 plays R

or the other way around.

1
2

t1

t2

1
2

L R

L R

u

d
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d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

Cookbook: For each possible equilibrium
go over signaling requirements 3 and 2:

SR3: R: Find the beliefs p, q given S’s eq.
strategy. (Only consider beliefs that
are consistent with S’s eq. strategy.)

SR2R: R: Given beliefs, find a(mj |µ(t1|mj )).
SR2S: S: Does t1 or t2 want to deviate?
PBE: No deviation → PBE. Pooling on L:

Find off-eq. a(R|q) → possibly two
different PBE for different q. 21



PS11, Ex. 3: Signaling game
(pooling and separating PBE)



PS11, Ex. 3: Signaling game (pooling and separating PBE)

Consider the signaling game in Figure 1.

(a) Suppose there is a pooling PBE where the Sender sends message L regardless of
his type. What are the beliefs in this equilibrium?

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?
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[p] [q]

[1-q][1-p]
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PS11, Ex. 3.a: Signaling game (pooling and separating PBE)

(a) Suppose there is a pooling PBE where the Sender sends message L regardless of
his type. What are the beliefs in this equilibrium?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In
equilibrium, we only consider beliefs
of R that are consistent with S’s
equilibrium strategy.)
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PS11, Ex. 3.a: Signaling game (pooling and separating PBE)

(a) Suppose there is a pooling PBE where the Sender sends message L regardless of
his type. What are the beliefs in this equilibrium?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.):

µ(t1|L) = µ(t2|L) = 1
2

⇒ p = 1− p = 1
2

q ∈ [0; 1]

I.e. in a pooling perfect Bayesian
equilibrium where S always sends the
message L, the receiver R believes that S
can be type t1 or t2 with equal probability
as the signal does not reveal anything.

As the message R is not a part of S’s
equilibrium strategy, the receiver R has
no beliefs about q other than q ∈ [0, 1] in
the case where S would unexpectedly
send the message R instead.
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3:
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In
equilibrium, we only consider beliefs
of R that are consistent with S’s
equilibrium strategy.)
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R:
SR2S:
PBE:
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u

d
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d
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d
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d

Nature RR

[p] [q]

[1-q][1-p]

SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}
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Nature RR
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}
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d

Nature RR

[p] [q]
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions.
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2) 30



PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions. (first example)

i: Simplest possible example.
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2)
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions. (second example)

i: Simplest possible example.
ii: Does the PBE still hold for this

example?
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2)
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions. (second example)

i: Simplest possible example.
ii: Yes, all conditions still hold.
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2)
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions. (third example)

i: Simplest possible example.
ii: Yes, all conditions still hold.
iii: What about zero payoffs all over?
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2)
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PS11, Ex. 3.b: Signaling game (pooling and separating PBE)

(b) Consider a possible separating PBE where t1 sends message R, t2 sends message
L, and where the receiver chooses u if and only if he receives message L. Can you
write down payoffs for this game such that nobody has an incentive to deviate?

SR3: R: Find the beliefs of R given S’s
equilibrium strategy. (In equilibrium,
we only consider beliefs of R that are
consistent with S’s eq. strategy.)

SR2R: R: Find R’s optimal strategy given
beliefs about S’s strategy.

SR2S: S: Check whether S wants to deviate.
PBE: Write up the conditions such that

SR2R and SR2S hold (no incentive
to deviate) for the following PBE:

{( R︸︷︷︸
m(t1)

, L︸︷︷︸
m(t2)

), ( u︸︷︷︸
a(L)

, d︸︷︷︸
a(R)

), p = 0︸︷︷︸
µ(t1|L)

, q = 1︸︷︷︸
µ(t1|R)

}

→ Construct payoffs that live up to
these conditions. (third example)

i: Simplest possible example.
ii: Yes, all conditions still hold.
iii: All conditions hold with equality.
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SR3: In the separating PBE, R has beliefs:
µ(t1|L) = p∗ = 0
µ(t1|R) = q∗ = 1

SR2R: E[uR(L, u|p=0)] ≥ E[uR(L, d |p=0)]
E[uR(R, d |q=1)] ≥ E[uR(R, u|q=1)]

SR2S: uS(R, d |t1) ≥ uS(L, u|t1)
uS(L, u|t2) ≥ uS(R, d |t2)
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PS11, Ex. 4: Signaling games
(pooling and separating PBE)



PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
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Nature RR

[p] [q]

[1-q][1-p]
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.

1
2

(0,1)

(0,0)

(2,0)

(1,1)

(1,1)

(1,0)

(0,0)

(2,2)
t1

t2

1
2

L R
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u
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u
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u
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u

d

Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
1
2

(0,1)

(0,0)

(2,0)

(1,1)
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u
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d

Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:

µ(t1|L) = p = 1
2

and µ(t1|R) = q ∈ [0, 1]

SR2R: R: Indifferent between u and d :
E[uR(L, u|p)] = E[uR(L, d |p)]
1p + 0[1− p] = 0p + 1[1− p]

1
2

= 1
2

SR2S: S: t2 wants to deviate as L|t2 is
strictly dominated by R|t2.

PBE: Not a PBE as t2 would deviate.
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u
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d

Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
1
2

(0,1)

(0,0)

(2,0)

(1,1)

(1,1)

(1,0)

(0,0)

(2,2)
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u
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d

Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play u as

E[uR(R, u|q= 1
2 )] = 2 1

2 + 0 1
2 = 1

E[uR(R, d |q= 1
2 )] = 0 1

2 + 1 1
2 = 1

2
SR2S: t1 will not deviate even if a(L) = d :

uS(R, u|t1) = 2 ≥ 2 = max uS(L, a(L)|t1)
t2 will not deviate as R|t2 strictly
dominates L|t2.

PBE: Find the off-equilibrium beliefs p to
identify a(L|p) (possibly 2 for
different p.)
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u
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).
3.
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play u as

E[uR(R, u|q= 1
2 )] = 2 1

2 + 0 1
2 = 1

E[uR(R, d |q= 1
2 )] = 0 1

2 + 1 1
2 = 1

2
SR2S: t1 will not deviate even if a(L) = d :

uS(R, u|t1) = 2 ≥ 2 = max uS(L, a(L)|t1)
t2 will not deviate as R|t2 strictly
dominates L|t2.

PBE: Find the off-equilibrium beliefs p to
identify (two different) a(L|p):
E[uR(L, u|p) ≥ E[uR(L, d |p)

1p + 0[1− p] ≥ 0p + 1[1− p]
p ≥ 1/2
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).
3. Write up all PBE including (R,R).
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play u as

E[uR(R, u|q= 1
2 )] = 2 1

2 + 0 1
2 = 1

E[uR(R, d |q= 1
2 )] = 0 1

2 + 1 1
2 = 1

2
SR2S: t1 will not deviate even if a(L) = d :

uS(R, u|t1) = 2 ≥ 2 = max uS(L, a(L)|t1)
t2 will not deviate as R|t2 strictly
dominates L|t2.

PBE: Find the off-equilibrium beliefs p to
identify (two different) a(L|p):
E[uR(L, u|p) ≥ E[uR(L, d |p)

1p + 0[1− p] ≥ 0p + 1[1− p]
p ≥ 1/2
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
Step 4: For the separating strategy (L,R),

go over SR3, SR2R, and SR2S.
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
Step 4: For the separating strategy (L,R), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:

µ(t1|L) = p = 1 and µ(t1|R) = q = 0

SR2R: R: Best response is to play u|L, d |R.
SR2S: t1 will not deviate as

uS(L, u|t1) = 1 > 0 = uS(R, d |t1)

t2 will not deviate as

uS(R, d |t2) = 1 > 0 = uS(L, u|t2)

PBE: No deviation, thus, it’s a PBE.
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Nature RR
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[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
4.
{

(L,R), (u, d), p = 1, q = 0
}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
Step 4: For the separating strategy (L,R), go

over SR3, SR2R, and SR2S.
Step 5: For the separating strategy (R,L),

go over SR3, SR2R, and SR2S.
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Nature RR
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[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
4.
{

(L,R), (u, d), p = 1, q = 0
}
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
Step 4: For the separating strategy (L,R), go

over SR3, SR2R, and SR2S.
Step 5: For the separating strategy (R,L), go

over SR3, SR2R, and SR2S:
SR3: R: Beliefs given S’s eq. strategy:

µ(t1|L) = p = 0 and µ(t1|R) = q = 1

SR2R: R: Best response is to play d |L, u|R.
SR2S: t2 wants to deviate as

uS(L, d |t2) = 0 < 1 = uS(R, u|t2)

PBE: No PBE as t2 will want to deviate.
Step 6: Write up the full set of PBE.
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
4.
{

(L,R), (u, d), p = 1, q = 0
}

5. No PBE that includes (R, L).
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PS11, Ex. 4.a: Signaling games (pooling and separating PBE)

Exercise 4.4.a in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

Step 1: Write up S’s possible strategies.
Step 2: For the pooling strategy (L,L), go

over SR3, SR2R, and SR2S.
Step 3: For the pooling strategy (R,R), go

over SR3, SR2R, and SR2S.
Step 4: For the separating strategy (L,R), go

over SR3, SR2R, and SR2S.
Step 5: For the separating strategy (R,L), go

over SR3, SR2R, and SR2S:
Step 6: Write up the full set of PBE.
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Nature RR

[p] [q]

[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
2. No PBE that includes (L, L).

3.
{

(R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

}
4.
{

(L,R), (u, d), p = 1, q = 0
}

5. No PBE that includes (R, L).

6.

{ (R,R), (u, u), p ≥ 1
2 , q = 1

2
(R,R), (d , u), p ≤ 1

2 , q = 1
2

(L,R), (u, d), p = 1, q = 0

}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.
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[1-q][1-p]

1. SS = {(L, L); (R,R); (L,R); (R, L)}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:

µ(t1|L) = p = 1
2

and µ(t1|R) = q ∈ [0, 1]

SR2R: R: Best response is to play u|L as
E[uR(L, u|p= 1

2 )] = 0 1
2 + 3 1

2 = 3
2

E[uR(L, d |p= 1
2 )] = 1 1

2 + 1 1
2 = 1

SR2S: t1, t2 will not deviate if R plays u|R.
PBE: So, now what?
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p = 1

2
and µ(t1|R) = q ∈ [0, 1]

SR2R: R: Best response is to play u|L as
E[uR(L, u|p= 1

2 )] = 0 1
2 + 3 1

2 = 3
2

E[uR(L, d |p= 1
2 )] = 1 1

2 + 1 1
2 = 1

SR2S: t1, t2 will not deviate if R plays u|R.
PBE: Find values of q such that the

receiver plays u|R.
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p = 1

2
and µ(t1|R) = q ∈ [0, 1]

SR2R: R: Best response is to play u|L as
E[uR(L, u|p= 1

2 )] = 0 1
2 + 3 1

2 = 3
2

E[uR(L, d |p= 1
2 )] = 1 1

2 + 1 1
2 = 1

SR2S: t1, t2 will not deviate if R plays u|R.
PBE: Find values of q such that the

receiver plays u|R:
E[uR(R, u|q) ≥ E[uR(R, d |q)

0q + 2[1− q] ≥ 1q + 0[1− q]
2− 2q ≥ q

2 ≥ 3q
2
3
≥ q

Write up the PBE including beliefs.
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1.

55



PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p = 1

2
and µ(t1|R) = q ∈ [0, 1]

SR2R: R: Best response is to play u|L as
E[uR(L, u|p= 1

2 )] = 0 1
2 + 3 1

2 = 3
2

E[uR(L, d |p= 1
2 )] = 1 1

2 + 1 1
2 = 1

SR2S: t1, t2 will not deviate if R plays u|R.
PBE: Find values of q such that the

receiver plays u|R:
E[uR(R, u|q) ≥ E[uR(R, d |q)

0q + 2[1− q] ≥ 1q + 0[1− q]
2− 2q ≥ q

2 ≥ 3q
2
3
≥ q

Write up the PBE including beliefs.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play u as

E[uR(R, u|q= 1
2 )] = 0 1

2 + 2 1
2 = 1

E[uR(R, d |q= 1
2 )] = 1 1

2 + 0 1
2 = 1

2
SR2S: t1 will deviate as the payoff from

(L, a(L)|t1) is strictly higher than
(R, u|t1) = 0.

PBE: No PBE, as t1 wants to deviate.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

Step 3: For the separating strategy (L,R),
go over SR3, SR2R, and SR2S.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

Step 3: For the separating strategy (L,R), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p = 1 and µ(t1|R) = q = 0

SR2R: R: Best response is to play d |L, u|R.
SR2S: t1 will not deviate as

uS(L, d |t1) = 1 > 0 = uS(R, u|t1)
t2 will not deviate as

uS(R, u|t2) = 1 > 0 = uS(L, d |t2)
PBE: No deviation, thus, it’s a PBE.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
3.
{

(L,R), (d , u), p = 1, q = 0
}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

Step 3: For the separating strategy (L,R), go
over SR3, SR2R, and SR2S.

Step 4: For the separating strategy (R,L),
go over SR3, SR2R, and SR2S.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
3.
{

(L,R), (d , u), p = 1, q = 0
}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:
SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

Step 3: For the separating strategy (L,R), go
over SR3, SR2R, and SR2S.

Step 4: For the separating strategy (R,L), go
over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p = 0 and µ(t1|R) = q = 1

SR2R: R: Best response is to play u|L, d |R.
SR2S: t1 will not deviate as

uS(R, d |t1) = 4 > 3 = uS(L, u|t1)
t2 will not deviate as

uS(L, u|t2) = 3 > 2 = uS(R, d |t2)
PBE: No deviation, thus, it’s a PBE.

Step 5: Write up the full set of PBE.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
3.
{

(L,R), (d , u), p = 1, q = 0
}

4.
{

(R, L), (u, d), p = 0, q = 1
}
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PS11, Ex. 4.b: Signaling games (pooling and separating PBE)

Exercise 4.4.b in Gibbons (p. 248). Describe all the pure-strategy pooling and
separating perfect Bayesian equilibria in the following signaling game.

• Consider S’s possible strategies:

SS = {(L, L); (R,R); (L,R); (R, L)}

Step 1: For the pooling strategy (L,L), go
over SR3, SR2R, and SR2S.

Step 2: For the pooling strategy (R,R), go
over SR3, SR2R, and SR2S.

Step 3: For the separating strategy (L,R), go
over SR3, SR2R, and SR2S.

Step 4: For the separating strategy (R,L), go
over SR3, SR2R, and SR2S:

Step 5: Write up the full set of PBE.

1
2

(0,1)

(3,3)

(1,1)

(3,0)

(2,0)

(1,2)

(4,1)

(0,0)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

1.
{

(L, L), (u, u), p = 1
2 , q ≤

2
3
}

2. No PBE that includes (R,R).
3.
{

(L,R), (d , u), p = 1, q = 0
}

4.
{

(R, L), (u, d), p = 0, q = 1
}

5.

{ (L, L), (u, u), p = 1
2 , q ≤

2
3

(L,R), (d , u), p = 1, q = 0
(R, L), (u, d), p = 0, q = 1

}
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(pooling PBE)



PS11, Ex. 5.a: Signaling games (pooling PBE)

Exercise 4.3.a in Gibbons (p. 246). Specify a pooling perfect Bayesian equilibria in
which both Sender types play R in the following signaling game.

1
2

(3,1)

(0,0)

(2,0)

(1,2)

(2,2)

(1,0)

(3,0)

(0,1)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]
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PS11, Ex. 5.a: Signaling games (pooling PBE)

Exercise 4.3.a in Gibbons (p. 246). Specify a pooling perfect Bayesian equilibria in
which both Sender types play R in the following signaling game.

For the pooling strategy (R,R), go over
SR3, SR2R, and SR2S.

1
2

(3,1)

(0,0)

(2,0)

(1,2)

(2,2)

(1,0)

(3,0)

(0,1)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]
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PS11, Ex. 5.a: Signaling games (pooling PBE)

Exercise 4.3.a in Gibbons (p. 246). Specify a pooling perfect Bayesian equilibria in
which both Sender types play R in the following signaling game.

For the pooling strategy (R,R), go over
SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play d as

E[uR(R, u|q= 1
2 )] = 1 1

2 + 0 1
2 = 1

2
E[uR(R, d |q= 1

2 )] = 0 1
2 + 2 1

2 = 1
SR2S: t1 will not deviate as

uS(R, d |t1) = 3 > 1 = uS(L, u|t1)
uS(R, d |t1) = 3 > 2 = uS(L, d |t1)

t2 will deviate if a(L) = d (as 2<3)
but not if a(L) = u (as 2>0).

PBE: Find the off-equilibrium beliefs p
for which R plays a∗(L) = u.

1
2

(3,1)

(0,0)

(2,0)

(1,2)

(2,2)

(1,0)

(3,0)

(0,1)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]
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PS11, Ex. 5.a: Signaling games (pooling PBE)

Exercise 4.3.a in Gibbons (p. 246). Specify a pooling perfect Bayesian equilibria in
which both Sender types play R in the following signaling game.
For the pooling strategy (R,R), go over
SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play d as

E[uR(R, u|q= 1
2 )] = 1 1

2 + 0 1
2 = 1

2
E[uR(R, d |q= 1

2 )] = 0 1
2 + 2 1

2 = 1
SR2S: t1 will not deviate as

uS(R, d |t1) = 3 > 1 = uS(L, u|t1)
uS(R, d |t1) = 3 > 2 = uS(L, d |t1)

t2 will deviate if a(L) = d (as 2<3)
but not if a(L) = u (as 2>0).

PBE: Find the off-equilibrium beliefs p for
which R plays a∗(L) = u:
E[uR(L, u|p)] ≥ E[uR(L, d |p)]

2p ≥ 1− p

3p ≥ 1

p ≥
1
3

1
2

(3,1)

(0,0)

(2,0)

(1,2)

(2,2)

(1,0)

(3,0)

(0,1)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

Write up the PBE.
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PS11, Ex. 5.a: Signaling games (pooling PBE)

Exercise 4.3.a in Gibbons (p. 246). Specify a pooling perfect Bayesian equilibria in
which both Sender types play R in the following signaling game.
For the pooling strategy (R,R), go over
SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) = p ∈ [0, 1] and µ(t1|R) = q = 1

2
SR2R: R: Best response is to play d as

E[uR(R, u|q= 1
2 )] = 1 1

2 + 0 1
2 = 1

2
E[uR(R, d |q= 1

2 )] = 0 1
2 + 2 1

2 = 1
SR2S: t1 will not deviate as

uS(R, d |t1) = 3 > 1 = uS(L, u|t1)
uS(R, d |t1) = 3 > 2 = uS(L, d |t1)

t2 will deviate if a(L) = d (as 2<3)
but not if a(L) = u (as 2>0).

PBE: Find the off-equilibrium beliefs p for
which R plays a∗(L) = u:
E[uR(L, u|p)] ≥ E[uR(L, d |p)]

2p ≥ 1− p

3p ≥ 1

p ≥
1
3

1
2

(3,1)

(0,0)

(2,0)

(1,2)

(2,2)

(1,0)

(3,0)

(0,1)
t1

t2

1
2

L R

L R

u

d

u

d

u

d

u

d

Nature RR

[p] [q]

[1-q][1-p]

Write up the PBE:{
(R,R), (u, d), p ≥ 1

3
, q = 1

2

}
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PS11, Ex. 5.b: Signaling games (pooling PBE)

Exercise 4.3.b in Gibbons (p. 246). The following three-type signaling game begins
with a move by nature, not shown in the tree, that yields one of the three types with
equal probability. Specify a pooling perfect Bayesian equilibria in which all three
Sender types play L.

(0,0)

(1,1)

(2,1)

(0,0)

L R

u

d

u

d

[1-q1-q2][1-p1–p2]

1
3

(0,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(0,0)

(0,1)
t1

1
3

L R

L R

u

d

u

d

u

d

u

d

Receiver

Receiver

[p1] [q1]

t2

t3

1
3

[p2] [q2]

Receiver

Receiver
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PS11, Ex. 5.b: Signaling games (pooling PBE)

Exercise 4.3.b in Gibbons (p. 246). The following three-type signaling game begins
with a move by nature, not shown in the tree, that yields one of the three types with
equal probability. Specify a pooling PBE in which all three Sender types play L.

For the pooling strategy (L,L,L), go
over SR3, SR2R, and SR2S.

(0,0)

(1,1)

(2,1)

(0,0)

L R

u

d

u

d

[1-q1-q2][1-p1–p2]

1
3

(0,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(0,0)

(0,1)
t1

1
3

L R

L R

u

d

u

d

u

d

u

d

Receiver

Receiver

[p1] [q1]

t2

t3

1
3

[p2] [q2]

Receiver

Receiver
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PS11, Ex. 5.b: Signaling games (pooling PBE)

Exercise 4.3.b in Gibbons (p. 246). The following three-type signaling game begins
with a move by nature, not shown in the tree, that yields one of the three types with
equal probability. Specify a pooling PBE in which all three Sender types play L.
For the pooling strategy (L,L,L), go over
SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:

µ(t1|L) ≡ p1 = 1
3

= p2 ≡ µ(t2|L)

µ(t1|R) = q1 ∈ [0, 1]
µ(t2|R) = q1 ∈ [0, 1− q1]

SR2R: R: Best response is to play u|L as
E[uR(L, u)] = 1 1

3 + 1 1
3 + 1 1

3 = 1
E[uR(L, d)] = 0 1

3 + 0 1
3 + 0 1

3 = 0
SR2S: t1 will never deviate as L|t1 strictly

dominates R|t1.
t2 will not deviate (2>1, 2>1).
t3 will not deviate if R plays a(R)=u.

PBE: Find the off-equilibrium beliefs
q1, q2 for which R plays a∗(R) = u.

(0,0)

(1,1)

(2,1)

(0,0)

L R

u

d

u

d

[1-q1-q2][1-p1–p2]

1
3

(0,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(0,0)

(0,1)
t1

1
3

L R

L R

u

d

u

d

u

d

u

d

Receiver

Receiver

[p1] [q1]

t2

t3

1
3

[p2] [q2]

Receiver

Receiver
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PS11, Ex. 5.b: Signaling games (pooling PBE)

Exercise 4.3.b in Gibbons (p. 246). Find a PBE in which all three Sender types play L.
For the pooling strategy (L,L,L), go over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) ≡ p1 = 1

3 = p2 ≡ µ(t2|L)
µ(t1|R) = q1 ∈ [0, 1]
µ(t2|R) = q1 ∈ [0, 1− q1]

SR2R: R: Best response is to play u|L as
E[uR(L, u)] = 1 1

3 + 1 1
3 + 1 1

3 = 1
E[uR(L, d)] = 0 1

3 + 0 1
3 + 0 1

3 = 0
SR2S: t1 will never deviate as L|t1 strictly

dominates R|t1.
t2 will not deviate (2>1, 2>1).
t3 will not deviate if R plays a(R)=u.

PBE: Find the off-equilibrium beliefs q1, q2
for which R plays a∗(R) = u:
E[uR(R, u)] ≥ E[uR(R, d)]

1q1 + 1q2 ≥ 1(1− q1 − q2)
2q1 + 2q2 ≥ 1

q1 + q2 ≥
1
2

(0,0)

(1,1)

(2,1)

(0,0)

L R

u

d

u

d

[1-q1-q2][1-p1–p2]

1
3

(0,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(0,0)

(0,1)
t1

1
3

L R

L R

u

d

u

d

u

d

u

d

Receiver

Receiver

[p1] [q1]

t2

t3

1
3

[p2] [q2]

Receiver

Receiver

Write up the PBE with pooling on L 72



PS11, Ex. 5.b: Signaling games (pooling PBE)

Exercise 4.3.b in Gibbons (p. 246). Find a PBE in which all three Sender types play L.
For the pooling strategy (L,L,L), go over SR3, SR2R, and SR2S:

SR3: R: Beliefs given S’s eq. strategy:
µ(t1|L) ≡ p1 = 1

3 = p2 ≡ µ(t2|L)
µ(t1|R) = q1 ∈ [0, 1]
µ(t2|R) = q1 ∈ [0, 1− q1]

SR2R: R: Best response is to play u|L as
E[uR(L, u)] = 1 1

3 + 1 1
3 + 1 1

3 = 1
E[uR(L, d)] = 0 1

3 + 0 1
3 + 0 1

3 = 0
SR2S: t1 will never deviate as L|t1 strictly

dominates R|t1.
t2 will not deviate (2>1, 2>1).
t3 will not deviate if R plays a(R)=u.

PBE: Find the off-equilibrium beliefs q1, q2
for which R plays a∗(R) = u:
E[uR(R, u)] ≥ E[uR(R, d)]

1q1 + 1q2 ≥ 1(1− q1 − q2)
2q1 + 2q2 ≥ 1

q1 + q2 ≥
1
2

(0,0)

(1,1)

(2,1)

(0,0)

L R

u

d

u

d

[1-q1-q2][1-p1–p2]

1
3

(0,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(0,0)

(0,1)
t1

1
3

L R

L R

u

d

u

d

u

d

u

d

Receiver

Receiver

[p1] [q1]

t2

t3

1
3

[p2] [q2]

Receiver

Receiver

Write up the PBE with pooling on L:
{

(L, L, L), (u, u), p1 = p2 = 1
3 , q1 + q2 ≥ 1

2
}
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PS11, Ex. 6: Spence’s education
signaling model (pooling and
separating PBE)



PS11, Ex. 6: Spence’s education signaling model (PBE)

Consider the following version of Spence’s education signaling model, where a firm is
hiring a worker. Workers is characterized by their type θ, which measures their ability.
There are two worker types: θ ∈ {θL, θH}. Nature chooses the worker’s type, with
pH = P[θ = θH ] and pL = P[θ = θH ] = 1− pH .
The worker observes his own type, but the firm does not. The worker can choose his
level of education: e ∈ R+. The cost to him of acquiring this education is
cθ(e) = e/θ. Education is observed by the firm, who then forms beliefs about the
workers type: µ(θ|e). We assume that the marginal productivity of a worker is equal
to his ability and that the company is in competition such it pays the marginal
productivity: w(e) = E[θ|e]. Thus, the payoff to a worker conditional on his type and
education is uθ(e) = w(e)− cθ(e). Suppose for this exercise that θH = 3 and θL = 1.
(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)

75



PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to
be by a low type.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to be
by a low type.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the
beliefs).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule).
Step 2: Specify off-equilibrium path beliefs

where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint):

w(e∗L )− cθL (e∗L ) ≥ w(e∗H )− cθL (e∗H )

θL −
e∗L
θL
≥ θH −

e∗H
θL

1−
e∗L
1
≥ 3−

e∗H
1

e∗L ≥ 2− e∗H
e∗H − e∗L ≥ 2

Step 5: Find e∗H , e
∗
L such that high types

will not deviate (ICC).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule).
Step 2: Specify off-equilibrium path beliefs

where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗H , e
∗
L such that high types will

not deviate (ICC):
w(e∗H )− cθH (e∗H ) ≥ w(e∗L )− cθH (e∗L )

θH −
e∗H
θH
≥ θL −

e∗L
θH

3−
e∗H
3
≥ 1−

e∗L
3

2 ≥
e∗H − e∗L

3
6 ≥ e∗H − e∗L

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
5. e∗H − e∗L ≤ 6⇒ e∗H − e∗L ∈ [2, 6]
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule).

Step 2: Specify off-equilibrium path beliefs
where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗H , e
∗
L such that high types will

not deviate (ICC):
Step 6: Which level of e∗L does θL choose?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
5. e∗H − e∗L ≤ 6⇒ e∗H − e∗L ∈ [2, 6]
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule).
Step 2: Specify off-equilibrium path beliefs

where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗H , e
∗
L such that high types will

not deviate (ICC):
Step 6: Which level of e∗L does θL choose?

The productivity, and thus the wage, is
the same for all levels of education when
the incentives (ICCs) are satisfied. But
education is costly for the worker.

Step 7: Write up the PBE given beliefs.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
5. e∗H − e∗L ≤ 6⇒ e∗H − e∗L ∈ [2, 6]
6. e∗L = 0 is the cost-minimizing effort.

85



PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule).
Step 2: Specify off-equilibrium path beliefs

where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗H , e
∗
L such that high types will

not deviate (ICC):
Step 6: Which level of e∗L does θL choose?

The productivity, and thus the wage, is
the same for all levels of education when
the incentives (ICCs) are satisfied. But
education is costly for the worker.

Step 7: Write up the PBE given beliefs.
Step 8: Which e∗H is cost-minimizing?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
5. e∗H − e∗L ≤ 6⇒ e∗H − e∗L ∈ [2, 6]
6. e∗L = 0 is the cost-minimizing effort.
7. {e∗H ∈ [2, 6], e∗L =0,w∗(e), µ∗(θH |e)}
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PS11, Ex. 6.a: Spence’s education signaling model (separating PBE)

(a) Find a separating pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule).
Step 2: Specify off-equilibrium path beliefs

where any deviation is believed to be
by a low type.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗H , e
∗
L such that low types will

not imitate high types (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗H , e
∗
L such that high types will

not deviate (ICC):
Step 6: Which level of e∗L does θL choose?

The productivity, and thus the wage, is
the same for all levels of education when
the incentives (ICCs) are satisfied. But
education is costly for the worker.

Step 7: Write up the PBE given beliefs.
Step 8: Which e∗H is cost-minimizing?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗H

)
= P
[
θ = θH |e∗H

]
= 1

µ
(
θL|e∗L

)
= P
[
θ = θL|e∗L

]
= 1

2. µ∗(θH |e) =
{

1, e = e∗H
0, e 6= e∗H

3. w∗(e) =
{

3, e = e∗H
1, e 6= e∗H

4. e∗H − e∗L ≥ 2
5. e∗H − e∗L ≤ 6⇒ e∗H − e∗L ∈ [2, 6]
6. e∗L = 0 is the cost-minimizing effort.
7. {e∗H ∈ [2, 6], e∗L =0,w∗(e), µ∗(θH |e)}
8. The efficient PBE is for e∗H = 2.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the
beliefs).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint):

w(e∗p )− cθL (e∗p ) ≥ w(e′)− cθL (e′)

1 + 2pH −
e∗p
θL
≥ 1− e′

θL

2pH −
e∗p
1
≥

0
1

2pH ≥ e∗p

Step 5: Find e∗p such that ICC holds for θH .

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗(θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗(e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗p such that ICC holds for θH :
w(e∗p )− cθH (e∗p ) ≥ w(e′)− cθH (e′)

1 + 2pH −
e∗p
θH
≥ 1− e′

θH

2pH −
e∗p
3
≥

0
3

2pH ≥
e∗p
3

6pH ≥ e∗p

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH
Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗(θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗(e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗p such that ICC holds for θH :
Step 6: Write up the pooling PBE.

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗p such that ICC holds for θH :
Step 6: Write up the pooling PBE.
Step 7: Which e∗p is cost-minimizing?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗p such that ICC holds for θH :
Step 6: Write up the pooling PBE.
Step 7: Which e∗p is cost-minimizing?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}
7. The efficient PBE is for e∗p = 0.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 2: Specify off-equilibrium path beliefs,
believing any deviation is by θL.

Step 3: Write up the wage function under
competition (implied by the beliefs).

Step 4: Find e∗p where the optimal deviation
e′ = 0 isn’t profitable for θL (ICC -
Incentive Compatibility Constraint).

Step 5: Find e∗p such that ICC holds for θH :
Step 6: Write up the pooling PBE.
Step 7: Which e∗p is cost-minimizing?
Step 8: Explain: Which 2 assumptions are

necessary for this PBE where both
high-ability and low-ability workers
take zero education?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}
7. The efficient PBE is for e∗p = 0.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
high-ability and low-ability workers
take zero education?

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Types: θ ∈ {θL, θH}, θH = 3 and θL = 1
Prob.: pH = P[θ = θH ] and pL = 1− pH

Wage: w(e) = E[θ|e]
Cost: cθ(e) = e/θ

Utility: uθ(e) = w(e)− cθ(e)
1. µ

(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

2. µ∗p (θH |e) =
{

pH , e = e∗p
0, e 6= e∗p

3. w∗p (e) =
{

1 + 2pH , e = e∗p
1, e 6= e∗p

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}
7. The efficient PBE is for e∗p = 0.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs
and the wage function.

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.

Step 1: Specify on-equilibrium path beliefs
(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′.

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′:

w(e∗∗p )− cθL (e∗∗p ) ≥ w(e′′)− cθL (e′′)

1 + 2pH −
e∗∗p

1
≥ 3− e′′

1
2pH − e∗∗p ≥ 2− e′′

e′′ ≥ 2− 2pH + e∗∗p
Step 12: Also, θH must not deviate to e′′.

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}
11. e′′ ≥ 2− 2pH + e∗∗p (†)
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′.

Step 12: Also, θH must not deviate to e′′:
w(e∗∗p )− cθH (e∗∗p ) ≥ w(e′′)− cθH (e′′)

1 + 2pH −
e∗∗p

3
≥ 3− e′′

3
e′′

3
≥ 2− 2pH +

e∗∗p

3
e′′ ≥ 6− 6pH + e∗∗p

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}
11. e′′ ≥ 2− 2pH + e∗∗p (†)
12. e′′ ≥ 6− 6pH + e∗∗p (‡) binds more.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′.

Step 12: Also, θH must not deviate to e′′.
Step 13: Write up the PBE conditional on

(‡).

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}
11. e′′ ≥ 2− 2pH + e∗∗p (†)
12. e′′ ≥ 6− 6pH + e∗∗p (‡) binds more.
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PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′.

Step 12: Also, θH must not deviate to e′′.
Step 13: Write up the PBE conditional on (‡):
{eL = eH = e∗∗p ∈ [0, 2pH ],w∗∗p (e), µ∗∗p (θH |e)}

Step 14: Why would θH not deviate to e′′?

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)

5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}

11. e′′ ≥ 2− 2pH + e∗∗p (†)

12. e′′ ≥ 6− 6pH + e∗∗p (‡) binds more. 108



PS11, Ex. 6.b: Spence’s education signaling model (pooling PBE)

(b) Find a pooling pure strategy Perfect Bayesian Equilibrium.
Step 1: Specify on-equilibrium path beliefs

(determined by Bayes’ rule) for the
pooling PBE where eL = eH = e∗p .

Step 8: Explain: Which 2 assumptions are
necessary for this PBE where both
type θH and θL take zero education?

[Bonus] Can a pooling PBE exist with
beliefs that a certain deviation e′′ is
believed to be by a high type θH ?

Step 9: Specify off-equilibrium path beliefs.
Step 10: Write up the implied wage function.
Step 11: While the ICCs (∗), (∗∗) still hold,

find e∗∗p , e′′ such that it’s not
profitable for θL to deviate to e′′.

Step 12: Also, θH must not deviate to e′′.
Step 13: Write up the PBE conditional on (‡):
{eL = eH = e∗∗p ∈ [0, 2pH ],w∗∗p (e), µ∗∗p (θH |e)}

Step 14: Why would θH not deviate to e′′?
The firm requires an inefficiently high e′′
in order to believe the worker is type θH .

1. µ
(
θH |e∗p

)
= pH , µ

(
θL|e∗p

)
= 1−pH

4. e∗p ≤ 2ph (∗)
5. e∗p ≤ 6ph (∗∗) binds less than (∗).
6. {e∗p ∈ [0, 2pH ],w∗p (e), µ∗p (θH |e)}

8.i Education is unproductive, thus,
it only affects the wage in terms
of being a signal of one’s type.

8.ii The firm believes that any
deviation from the pooling eq.
would be by a low ability type.

9. µ∗∗p (θH )=

{ 1, e = e′′
pH , e = e∗∗p

0, e /∈ {e∗∗p , e′′}

10. w∗∗p =

{ 3, e = e′′
1 + 2pH , e = e∗∗p

1, e /∈ {e∗∗p , e′′}
11. e′′ ≥ 2− 2pH + e∗∗p (†)
12. e′′ ≥ 6− 6pH + e∗∗p (‡) binds more.
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