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PS4, Ex. 1 (A): MSNE and best-response functions

PS4, Ex. 2: Entry deterrence (backwards induction)

PS4, Ex. 3: The Focal Point (plotting BR functions)

Guide: Examine which equilibria are the most realistic in a static game

PS4, Ex. 4: Generalized Battle of the Sexes (plotting BR functions)

Take Home Assignment 1 (theorems and backwards induction)

PS4, Ex. 5: North-Atlantic, 1943 (MSNE)

PS4, Ex. 6: Stopping the bike thief (MSNE)

PS4, Ex. 7: To keep or split (backwards induction)

PS4, Ex. 8: Building a playground (Stackelberg game)
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PS4, Ex. 1 (A): MSNE and
best-response functions



PS4, Ex. 1 (A): MSNE and best-response functions

1. (A) Find all equilibria (pure and mixed) in the following games, first analytically
and then through plotting the best-response functions.

(a)

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

(b)

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Hint: Find the probabilities q for which Player 1 is indifferent, e.g. u1(T , q) = u1(B, q).
and the probabilities p for which Player 2 is indifferent, e.g. u2(L, p) = u2(R, p).
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Highlight the best responses in pure
strategies.
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

For which values of q is Player 1
indifferent?

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]
=
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

Write up all NE (pure and mixed).

NE = (p∗, q∗) =
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

Write up all NE (pure and mixed).

The players have symmetric payoffs, thus:

NE = (p∗, q∗) = {(0, 0); (1, 1); ...}
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

The players have symmetric payoffs, thus:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(4

7
,

4
7

)}
Write up Player 1’s best-response (BR)
function, p∗(q)

BR1(q) = {
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

The players have symmetric payoffs, thus:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(4

7
,

4
7

)}
Plot Player 1’s best-response (BR)
function, p∗(q)

Write up and plot the BR functions:

BR1(q) =

{
p = 0 if q < 4/7
p ∈ [0, 1] if q = 4/7
p = 1 if q > 4/7

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

The players have symmetric payoffs, thus:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(4

7
,

4
7

)}
Write up Player 2’s BR function, q∗(p)

Write up and plot the BR functions:

BR1(q) =

{
p = 0 if q < 4/7
p ∈ [0, 1] if q = 4/7
p = 1 if q > 4/7

BR2(p) = {

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

The players have symmetric payoffs, thus:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(4

7
,

4
7

)}
Plot Player 2’s BR function, q∗(p)

Write up and plot the BR functions:

BR1(q) =

{
p = 0 if q < 4/7
p ∈ [0, 1] if q = 4/7
p = 1 if q > 4/7

BR2(p) =

{
q = 0 if p < 4/7
q ∈ [0, 1] if p = 4/7
q = 1 if p > 4/7

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.a (A): MSNE and best-response functions

(a) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) L (1-q)

T (p) 3, 3 0, 0
B (1-p) 0, 0 4, 4

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]

3q = 4(1− q)⇔ q = 4
7

The players have symmetric payoffs, thus:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(4

7
,

4
7

)}

Write up and plot the BR functions:

BR1(q) =

{
p = 0 if q < 4/7
p ∈ [0, 1] if q = 4/7
p = 1 if q > 4/7

BR2(p) =

{
q = 0 if p < 4/7
q ∈ [0, 1] if p = 4/7
q = 1 if p > 4/7

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q) BR2(p) NE
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Highlight the best responses in pure
strategies.
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

For which values of q is Player 1
indifferent?

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]
=
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

For which values of p is Player 2
indifferent?

Find p such that Player 2 expect to have
equal payoffs from playing L and R:

E [u2|L] = E [u2|R]
=
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all equilibria (pure and mixed),
first analytically and then through
plotting the BR functions.

Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Find q such that Player 1 expects to have
equal payoffs from playing T and B:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Find p such that Player 2 expect to have
equal payoffs from playing L and R:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

Write up all NE (pure and mixed).
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:
Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:
Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}

Write up Player 1’s best-response (BR)
function, p∗(q)

BR1(q) = {
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:
Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}

Plot Player 1’s best-response (BR)
function, p∗(q)

Then through plotting the BR functions:

BR1(q) =
{

p = 0 if q < 1
p ∈ [0, 1] if q = 1

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:
Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}

Write up Player 2’s BR function, q∗(p)

Then through plotting the BR functions:

BR1(q) =
{

p = 0 if q < 1
p ∈ [0, 1] if q = 1

BR2(p) = {

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:
Player 2

Pl
ay

er
1 L (q) R (1-q)

T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}

Plot Player 2’s BR function, q∗(p)

Then through plotting the BR functions:

BR1(q) =
{

p = 0 if q < 1
p ∈ [0, 1] if q = 1

BR2(p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q)
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PS4, Ex. 1.b (A): MSNE and best-response functions

(b) Find all NE, first analytically:

Player 2
Pl

ay
er

1 L (q) R (1-q)
T (p) 1, 1 0, 0
B (1-p) 1, 0 2, 1

Player 1 is indifferent for:

E [u1|T ] = E [u1|B]
q = q + 2(1− q)⇔ q = 1

Player 2 is indifferent for:

E [u2|L] = E [u2|R]

p = 1− p ⇔ p = 1
2

and chooses q = 1 for p > 1/2.

The pure and mixed NE, (p∗, q∗), are:{
(0, 0); (1, 1);

(
p ∈
[1

2
, 1
)

, q = 1
)}

Then through plotting the BR functions:

BR1(q) =
{

p = 0 if q < 1
p ∈ [0, 1] if q = 1

BR2(p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 T
)

BR1(q) BR2(p) NE
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PS4, Ex. 2: Entry deterrence
(backwards induction)



PS4, Ex. 2: Entry deterrence (backwards induction)

Consider the following dynamic game:
firm 1 owns a shop in town A. Firm 2
decides whether to enter the market in
town A. If firm 2 enters, firm 1 chooses
whether to fight or accommodate the
entrant. If firm 2 does not enter, firm 1
receives a profit of 2 and firm 2 gets 0. If
firm 2 enters and firm 1 accommodates,
they share the market and each of them
receives a profit of 1. If firm 2 enters and
firm 1 decides to fight, firm 2 suffers a
loss of 1 (so that the payoff is -1), but
fighting is costly for firm 1, lowering its
payoff to 0.

(a) Draw the game tree.
(b) Solve the game by backwards

induction.
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PS4, Ex. 2: Entry deterrence (backwards induction)

Consider the following dynamic game:
firm 1 owns a shop in town A. Firm 2
decides whether to enter the market in
town A. If firm 2 enters, firm 1 chooses
whether to fight or accommodate the
entrant. If firm 2 does not enter, firm 1
receives a profit of 2 and firm 2 gets 0. If
firm 2 enters and firm 1 accommodates,
they share the market and each of them
receives a profit of 1. If firm 2 enters and
firm 1 decides to fight, firm 2 suffers a
loss of 1 (so that the payoff is -1), but
fighting is costly for firm 1, lowering its
payoff to 0.

(a) Draw the game tree.
(b) Solve the game by backwards

induction.

Fight

Firm 2

Accommodate

Enter

Firm 1

(1,1)

(2,0)

Not enter

(0,-1)
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PS4, Ex. 2: Entry deterrence (backwards induction)

(a) Draw the game tree.
(b) Solve the game by backwards

induction.

Starting from the bottom: If Firm 2 has
entered the market in the 1st round, then
Firm 1 can choose to either fight or
accommodate in the 2nd round.

Fight

Firm 2

Accommodate

Enter

Firm 1

(1,1)

(2,0)

Not enter

(0,-1)
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PS4, Ex. 2: Entry deterrence (backwards induction)

(a) Draw the game tree.
(b) Solve the game by backwards

induction.

Starting from the bottom: If Firm 2 has
entered the market in the 1st round, then
Firm 1 can choose to either fight or
accommodate in the 2nd round.

Firm 1 will always accommodate, as it is
more costly to fight (1 > 0).

Fight

Firm 2

Accommodate

Enter

Firm 1

(1,1)

(2,0)

Not enter

(0,-1)
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PS4, Ex. 2: Entry deterrence (backwards induction)

(a) Draw the game tree.
(b) Solve the game by backwards

induction.

Starting from the bottom: If Firm 2 has
entered the market in the 1st round, then
Firm 1 can choose to either fight or
accommodate in the 2nd round.

Firm 1 will always accommodate, as it is
more costly to fight (1 > 0).

Knowing that Firm 1 is rational and will
accommodate in the 2nd round, Firm 2
(first mover), will always chose to enter in
the 1st round (1 > 0), i.e. the backwards
induction solution is the strategy profile:

(s1, s2) = (Accommodate, Enter)

Fight

Firm 2

Accommodate

Enter

Firm 1

(1,1)

(2,0)

Not enter

(0,-1)
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PS4, Ex. 2: Entry deterrence (backwards induction)

(a) Draw the game tree.
(b) Solve the game by backwards

induction.

Starting from the bottom: If Firm 2 has
entered the market in the 1st round, then
Firm 1 can choose to either fight or
accommodate in the 2nd round.

Firm 1 will always accommodate, as it is
more costly to fight (1 > 0).

Knowing that Firm 1 is rational and will
accommodate in the 2nd round, Firm 2
(first mover), will always chose to enter in
the 1st round (1 > 0), i.e. the backwards
induction solution is the strategy profile:

(s1, s2) = (Accommodate, Enter)

Intuition: Firm 2 has first mover
advantage, thus, to ”Fight” would not be
a credible threat given Firm 1 is rational.
I.e. Firm 2’s decision can be reduced to
the upper part of the game tree.

Fight

Firm 2

Accommodate

Enter

Firm 1

(1,1)

(2,0)

Not enter

(0,-1)

Firm 2

Enter

(1,1) (2,0)

Not enter
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PS4, Ex. 2 extra: Choices off the equilibrium path

(c) What is the solution now?

Looking at the new choices: If Firm 2
chooses to not enter in the 1st round,
then Firm 1 can choose to either continue
as normal or shut down in the 2nd round,
effectively handing over the whole market
to Firm 2 instead.

Fight

Firm 2

Acc.

Enter

Firm 1

(1,1)

Not enter

(0,-1)

Continue Shutdown

Firm 1

(0,2)(2,0)
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PS4, Ex. 2 extra: Choices off the equilibrium path

(c) What is the solution now?

Looking at the new choices: If Firm 2
chooses to not enter in the 1st round,
then Firm 1 can choose to either continue
as normal or shut down in the 2nd round.

Firm 1 will always continue, as it will
gain nothing in a shutdown (2 > 0).

Knowing that Firm 1 is rational and will
choose to continue in the 2nd round, Firm
2 (first mover), would get 0 by not
entering in the 1st round, so to enter in
the 1st round will be the best response
(1 > 0).

What is the full strategy profile for the
backwards induction solution?

Fight

Firm 2

Acc.

Enter

Firm 1

(1,1)

Not enter

(0,-1)

Continue Shutdown

Firm 1

(0,2)(2,0)

29



PS4, Ex. 2 extra: Choices off the equilibrium path

(a) What is the solution now?

Looking at the new choices: If Firm 2
chooses to not enter in the 1st round,
then Firm 1 can choose to either continue
as normal or shut down in the 2nd round.

Firm 1 will always continue, as it will
gain nothing in a shutdown (2 > 0).

Knowing that Firm 1 is rational and will
choose to continue in the 2nd round, Firm
2 (first mover), would get 0 by not
entering in the 1st round, so to enter in
the 1st round will be the best response
(1 > 0), i.e. the backwards induction
solution is the full strategy profile:

(s1, s2) = (”Accommodate””Continue”, ”Enter”)

Off the equilibrium path: The strategy
profile now reflect choices off the
equilibrium path, this is done because
firm 1’s choices off the equilibrium path
might be relevant to the equilibrium path.

Fight

Firm 2

Acc.

Enter

Firm 1

(1,1)

Not enter

(0,-1)

Continue Shutdown

Firm 1

(0,2)(2,0)
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PS4, Ex. 3: The Focal Point
(plotting BR functions)



PS4, Ex. 3: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

(c) Now assume again that Thomas and
Alice both want to meet (so that
payoffs are as in part (a)), but now
there are N bars in town, where N
can be very large. Show that there
are 2N − 1 equilibria (pure and
mixed). Say that the bars have
names: “The First Bar in Town”,
“The Second Bar in Town”, and so
on. Which equilibrium is the most
realistic?

31



PS4, Ex. 3.a: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

Thomas

Al
ice

F (q) O (1-q)
F (p) 1, 1 0, 0
O (1-p) 0, 0 1, 1

For which values of q is Alice
indifferent?

E [uA|Focal] = E [uA|Other ]
=

32



PS4, Ex. 3.a: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

Thomas

Al
ice

F (q) O (1-q)
F (p) 1, 1 0, 0
O (1-p) 0, 0 1, 1

Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

q = 1− q ⇔ q = 1
2

Write up all NE (pure and mixed).

NE = (p∗, q∗) = {...}
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PS4, Ex. 3.a: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

Thomas

Al
ice

F (q) O (1-q)
F (p) 1, 1 0, 0
O (1-p) 0, 0 1, 1

Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

q = 1− q ⇔ q = 1
2

Taking advantage of symmetry:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)}
Which is the most realistic?
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PS4, Ex. 3.a: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

Thomas

Al
ice

F (q) O (1-q)
F (p) 1, 1 0, 0
O (1-p) 0, 0 1, 1

Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

q = 1− q ⇔ q = 1
2

Taking advantage of symmetry:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)}
Which is the most realistic?

( 1
2 , 1

2 ) seems unlikely as expected payoffs
are 1

2 while being 1 for (0, 0) and (1, 1).

Where would you go?
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PS4, Ex. 3.a: The Focal Point (plotting BR functions)

Thomas and Alice want to meet on a
Friday night. There are two bars in their
home town: “The Focal Point” and “The
Other Place”. They have to decide
independently where they go. If they
meet in the same bar, they both get
utility of 1. If they end up in different
bars, they get utility of 0.

(a) Find all equilibria (pure and mixed).
Which equilibrium do you consider
the most realistic? Where would you
go if you were one of them?

Thomas

Al
ice

F (q) O (1-q)
F (p) 1, 1 0, 0
O (1-p) 0, 0 1, 1

Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

q = 1− q ⇔ q = 1
2

Taking advantage of symmetry:

NE = (p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)}
Which is the most realistic?

( 1
2 , 1

2 ) seems unlikely as expected payoffs
are 1

2 while being 1 for (0, 0) and (1, 1).

Where would you go?

I would go to the ”The Focal Point” - it
sounds like the place to meet.
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Write up the new matrix and highlight
the best responses. What are the pure
strategy NE?
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

There exist no NE in pure strategies.

For which values of q is Alice
indifferent?
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

−q + (1− q) = q − (1− q)⇔ q = 1
2

For which values of p is Thomas
indifferent?
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

E [uT |Focal] = E [uT |Other ]

p − (1− p) = −p + (1− p)⇔ p = 1
2

Write up Alice’s BR function, p∗(q)

BRA(q) = {
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

E [uT |Focal] = E [uT |Other ]

p − (1− p) = −p + (1− p)⇔ p = 1
2

The BR functions are:

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) = {

Write up Thomas’ BR function, q∗(p)
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Thomas gets a
payoff of 1 if he meets Alice, and -1
otherwise. Alice gets a payoff of -1
for meeting Thomas, and 1
otherwise. Find all equilibria (pure
and mixed).

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

E [uA|Focal] = E [uA|Other ]

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

E [uT |Focal] = E [uT |Other ]

p − (1− p) = −p + (1− p)⇔ p = 1
2

The BR functions are:

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Find all NE.

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

p − (1− p) = −p + (1− p)⇔ p = 1
2

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2
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Plot Alice’s BR function, p∗(q)
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Find all NE.

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

p − (1− p) = −p + (1− p)⇔ p = 1
2

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
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bi
lit

y 
of
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)

BRA(q)

Plot Thomas’ BR function, q∗(p)
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Find all NE.

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

p − (1− p) = −p + (1− p)⇔ p = 1
2

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p
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)

BRA(q) BRT(p) NE

Write up all NE (pure and mixed).

NE = (p∗, q∗) =
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PS4, Ex. 3.b: The Focal Point (plotting BR functions)

(b) Now assume that Thomas wants to
meet Alice, but Alice does not want
to meet Thomas. Find all NE.

Thomas

Al
ice

F (q) O (1-q)
F (p) -1, 1 1, -1
O (1-p) 1, -1 -1, 1

No PSNE. Alice is indifferent for:

−q + (1− q) = q − (1− q)⇔ q = 1
2

Thomas is indifferent for:

p − (1− p) = −p + (1− p)⇔ p = 1
2

BRA(q) =

{
p = 1 if q < 1/2
p ∈ [0, 1] if q = 1/2
p = 0 if q > 1/2

BRT (p) =

{
q = 0 if p < 1/2
q ∈ [0, 1] if p = 1/2
q = 1 if p > 1/2

0.0 0.5 1.0
q (probability of L)

0.0

0.2

0.4

0.6

0.8

1.0

p 
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bi
lit

y 
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)

BRA(q) BRT(p) NE

The only NE is the Mixed Strategy NE:

(p∗, q∗) =
(1

2
,

1
2

)
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Now assume again that Thomas and Alice both want to meet (so that payoffs are
as in part (a)), but now there are N bars in town, where N can be very large.
Show that there are 2N − 1 equilibria (pure and mixed). Say that the bars have
names: “The First Bar in Town”, “The Second Bar in Town”, and so on. Which
equilibrium is the most realistic?
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Now assume again that Thomas and Alice both want to meet (so that payoffs are
as in part (a)), but now there are N bars in town, where N can be very large.
Show that there are 2N − 1 equilibria (pure and mixed). Say that the bars have
names: “The First Bar in Town”, “The Second Bar in Town”, and so on.

For N=2: We have 3 = 2N − 1 equilibria:

(p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)} Thomas

Al
ice

Bar1 (q) Bar2 (1-q)
Bar1 (p) 1, 1 0, 0
Bar2 (1-p) 0, 0 1, 1

What about N=3?
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Now assume again that Thomas and Alice both want to meet (so that payoffs are
as in part (a)), but now there are N bars in town, where N can be very large.
Show that there are 2N − 1 equilibria (pure and mixed). Say that the bars have
names: “The First Bar in Town”, “The Second Bar in Town”, and so on.

For N=2: We have found 3 = 2N − 1
equilibria:

(p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)} Thomas

Al
ice

Bar1 (q) Bar2 (1-q)
Bar1 (p) 1, 1 0, 0
Bar2 (1-p) 0, 0 1, 1

What about N=3?
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Now assume again that Thomas and Alice both want to meet (so that payoffs are
as in part (a)), but now there are N bars in town, where N can be very large.
Show that there are 2N − 1 equilibria (pure and mixed). Say that the bars have
names: “The First Bar in Town”, “The Second Bar in Town”, and so on.

For N=2: We have 3 = 2N − 1 equilibria:

(p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)} Thomas

Al
ice

Bar1 (q) Bar2 (1-q)
Bar1 (p) 1, 1 0, 0
Bar2 (1-p) 0, 0 1, 1

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

What about any N?
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Now assume again that Thomas and Alice both want to meet (so that payoffs are
as in part (a)), but now there are N bars in town, where N can be very large.
Show that there are 2N − 1 equilibria (pure and mixed). Say that the bars have
names: “The First Bar in Town”, “The Second Bar in Town”, and so on.

For N=2: We have 3 = 2N − 1 equilibria:

(p∗, q∗) =
{

(0, 0); (1, 1);
(1

2
,

1
2

)} Thomas

Al
ice

Bar1 (q) Bar2 (1-q)
Bar1 (p) 1, 1 0, 0
Bar2 (1-p) 0, 0 1, 1

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

For any N: It is plausible that the geometric continues for N > 3. Note that we’re
asked to ”show” not ”proof”, thus, providing two examples is sufficient.
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Which equilibrium is the most realistic?

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

Look at the expected payoffs from the pure and mixed equilibria when N=3...
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Which equilibrium is the most realistic?

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

In the three PSNE, the expected payoffs are:
(

E [uA|q∗1 , q∗2 )], E [uT |p∗1 , p∗2 )]
)

=

{(1− q1 − q2, 1− p1 − p2); (q2, p2); (q1, p1)} ∼ {(1, 1); (1, 1); (1, 1)}

What are the expected payoffs in the four MSNE?
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Which equilibrium is the most realistic?

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

In the three PSNE, the expected payoffs are:
(

E [uA|q∗1 , q∗2 )], E [uT |p∗1 , p∗2 )]
)

=

{(1− q1 − q2, 1− p1 − p2); (q2, p2); (q1, p1)} ∼ {(1, 1); (1, 1); (1, 1)}

In the four MSNE, the expected payoffs are:
(

E [uA|q∗1 , q∗2 )], E [uT |p∗1 , p∗2 )]
)

={(q1 + q2
2

,
p1 + p2

2

)
;
(1− q2

2
,

1− p2
2

)
;
(1− q1

2
,

1− p1
2

)
;
(1

3
,

1
3

)}
∼
{(1

2
,

1
2

)
;
(1

2
,

1
2

)
;
(1

2
,

1
2

)
;
(1

3
,

1
3

)}
Which equilibria are the most realistic - and which is the least realistic?
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PS4, Ex. 3.c: The Focal Point (plotting BR functions)

(c) Which equilibrium is the most realistic?

For N=3: We have 7 = 2N − 1 equilibria, (p∗1 , p∗2 , q∗1 , q∗2 ):{
(0, 0, 0, 0); (0, 1, 0, 1); (1, 0, 1, 0);

(1
2

,
1
2

,
1
2

,
1
2

)
;
(1

2
, 0,

1
2

, 0
)

;
(

0,
1
2

, 0,
1
2

)
;
(1

3
,

1
3

,
1
3

,
1
3

)}
Thomas

Bar1 (q1) Bar2 (q2) Bar3 (1-q1-q2)

Al
ice

Bar1 (p1) 1, 1 0, 0 0, 0
Bar2 (p2) 0, 0 1, 1 0, 0
Bar3 (1-p1-p2) 0, 0 0, 0 1, 1

In the three PSNE, the expected payoffs are:
(

E [uA|q∗1 , q∗2 )], E [uT |p∗1 , p∗2 )]
)

=

{(1− q1 − q2, 1− p1 − p2); (q2, p2); (q1, p1)} ∼ {(1, 1); (1, 1); (1, 1)}

In the four MSNE, the expected payoffs are:
(

E [uA|q∗1 , q∗2 )], E [uT |p∗1 , p∗2 )]
)

={(q1 + q2
2

,
p1 + p2

2

)
;
(1− q2

2
,

1− p2
2

)
;
(1− q1

2
,

1− p1
2

)
;
(1

3
,

1
3

)}
∼
{(1

2
,

1
2

)
;
(1

2
,

1
2

)
;
(1

2
,

1
2

)
;
(1

3
,

1
3

)}
PSNE have higher expected payoffs but without communication it’s not clear which
one to go for. Due to coordination issues, the MSNE can be just as good, even though
expected payoffs are reciprocal to the number of actions that a MSNE is split between. 55
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the most realistic in a static game



Guide: Examine which equilibria are the most realistic in a static game

1. Look at the pareto optimal solutions:
a. If exactly one Pure Strategy

Nash Equilibrium (PSNE) is
pareto optimal, rational players
should pick this sd olution.

b. If there are multiple pareto
optimal PSNE, there is a risk of
miscoordination, as players
can’t tell which PSNE the other
player is going for. Thus,
playing a mix of these can be
just as good as arbitrarily
picking a pure strategy.

2. Look at the punishment in the case
of miscoordination:

• E.g. If Player 1 thinks they are
going for a certain PSNE, but
they miscoordinate and Player 2
plays something else, how hard
will Player 1 be punished?

3. Use the two first points to talk about
what rational players would do?

4. Finally, consider what would happen
if one player could send a message?
Or they had just played the game
with mixed strategies, and by chance
landed on a pareto optimal PSNE?
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PS4, Ex. 4: Generalized Battle of
the Sexes (plotting BR functions)



PS4, Ex. 4: Generalized Battle of the Sexes (plotting BR functions)

Consider the following Generalized Battle
of the Sexes game, with N > 1:

Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

(a) How can you interpret the parameter
N?

(b) Solve for the mixed strategy Nash
equilibrium (MSNE). When N
becomes very large, what happens to
the probability of successful
coordination?
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PS4, Ex. 4.a: Generalized Battle of the Sexes (plotting BR functions)

(a) How can you interpret N > 1?

Formally: N is the factor of additional
utility for one’s most preferred outcome.

Informally: N is a measure for the
conflict of interests.

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

For which values of q is Player 1
indifferent?
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PS4, Ex. 4.a: Generalized Battle of the Sexes (plotting BR functions)

(a) How can you interpret N > 1?

Formally: N is the factor of additional
utility for one’s most preferred outcome.

Informally: N is a measure for the
conflict of interests.

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:

E [u1|C1] = E [u1|C2]

Nq = 1− q ⇔ q = 1
1 + N

For which values of p is Player 2
indifferent?
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:

E [u1|C1] = E [u1|C2]

Nq = 1− q ⇔ q = 1
1 + N

Player 2 is indifferent for:

E [u2|C1] = E [u2|C2]

p = N(1− p)⇔ p = N
1 + N

BR1(q) = p∗(q) = {
BR2(p) = q∗(p) = {

Find the best-response functions.
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:
E [u1|C1] = E [u1|C2]

Nq = 1− q ⇔ q = 1
1 + N

Player 2 is indifferent for:
E [u2|C1] = E [u2|C2]

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

Write the mixed strategy NE, (p∗, q∗).

61



PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:
Nq = 1− q ⇔ q = 1

1 + N
Player 2 is indifferent for:

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

NE =
{

(0, 0); (1, 1);
( 1

N + 1
,

N
N + 1

)}
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:
Nq = 1− q ⇔ q = 1

1 + N
Player 2 is indifferent for:

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

NE =
{

(0, 0); (1, 1);
( N

N + 1
,

1
N + 1

)}

When N →∞, what happens to the
probability of successful coordination?

0.0 0.5 1.0
q (probability of C1)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 C
1)

BR1(q)

To illustrate it, plot Player 1’s BR
function, p∗(q), e.g. for N = 9.
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:

Nq = 1− q ⇔ q = 1
1 + N

Player 2 is indifferent for:

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

NE =
{

(0, 0); (1, 1);
( N

N + 1
,

1
N + 1

)}

When N →∞, what happens to the
probability of successful coordination?

0.0 0.5 1.0
q (probability of C1)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 C
1)

BR1(q)

Plot Player 2’s BR function, q∗(p), for
the same large value of N (e.g. N = 9).
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:
Nq = 1− q ⇔ q = 1

1 + N
Player 2 is indifferent for:

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

NE =
{

(0, 0); (1, 1);
( N

N + 1
,

1
N + 1

)}

When N →∞, what happens to the
probability of successful coordination?

0.0 0.5 1.0
q (probability of C1)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 C
1)

BR1(q) BR2(p) NE

In the MSNE, what happens to p∗ and
q∗ when N → ∞? What happens to
the expected payoffs in the MSNE?
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PS4, Ex. 4.b: Generalized Battle of the Sexes (plotting BR functions)

(b) Find the MSNE.
Player 2

Pl
ay

er
1 C1 (q) C2 (1-q)

C1 (p) N, 1 0, 0
C2 (1-p) 0, 0 1, N

Player 1 is indifferent for:

Nq = 1− q ⇔ q = 1
1 + N

Player 2 is indifferent for:

p = N(1− p)⇔ p = N
1 + N

BR1(q) =

 p = 0 if q < 1
1+N

p ∈ [0, 1] if q = 1
1+N

p = 1 if q > 1
1+N

BR2(p) =

 q = 0 if p < N
1+N

q ∈ [0, 1] if p = N
1+N

q = 1 if p > N
1+N

NE =
{

(0, 0); (1, 1);
( N

N + 1
,

1
N + 1

)}

When N →∞, what happens to the
probability of successful coordination?

0.0 0.5 1.0
q (probability of C1)

0.0

0.2

0.4

0.6

0.8

1.0

p 
(p

ro
ba

bi
lit

y 
of

 C
1)

BR1(q) BR2(p) NE

MSNE : (p∗, q∗, u∗1 , u∗2 ) −−−−→
N→∞

(1, 0, 0, 0)

When N is large, coordination is difficult
as Player 1 plays C1 most of the time and
player 2 plays C2 most of the time. 66



Take Home Assignment 1 (theorems
and backwards induction)



Take Home Assignment 1, Ex. 1-2: Theorems

(1) Nash’s theorem (John Nash, 1950):

All finite games (finite number of players with finitely many strategies)
have at least one Nash Equilibrium. Some of these game may only have an
equilibrium in mixed strategies.

67
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Take Home Assignment 1, Ex. 1-2: Theorems

(1) Nash’s theorem (John Nash, 1950):

All finite games (finite number of players with finitely many strategies)
have at least one Nash Equilibrium. Some of these game may only have an
equilibrium in mixed strategies.

Refinement:

(2) The Oddness Theorem (Robert Wilson, 1971; John Charles Harsanyi, 1973):

Almost all finite games (finite number of players with finitely many strategies)
have at a finite number of Nash Equilibria, and that number is also odd.
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Take Home Assignment 1, Ex. 1-2: Theorems

(1) Nash’s theorem (John Nash, 1950):

All finite games (finite number of players with finitely many strategies)
have at least one Nash Equilibrium. Some of these game may only have an
equilibrium in mixed strategies.

Refinement:

(2) The Oddness Theorem (Robert Wilson, 1971; John Charles Harsanyi, 1973):

Almost all finite games (finite number of players with finitely many strategies)
have at a finite number of Nash Equilibria, and that number is also odd.

An exception is when one player is indifferent for a pure strategy of the other player,
e.g. the games we have seen in

• Exercise 2 of the Take Home Assignment.
• Exercise 1.b of Problem Set 4.
• Exercise 7.b and 7.c of Problem Set 3.

In these cases we get an infinite set of equilibria, i.e. the real numbers in an interval.
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Take Home Assignment 1, Ex. 3: Backwards induction

3. A dynamic game.

L′

(3,3) (4,0) (-1,-1) (1,1)

Player 1 Player 1

Player 2

R′ L′′

Player 2

R′′

RL

Player 1

(2,2) (3,1)

l r r ′l ′
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Take Home Assignment 1, Ex. 3.a: Backwards induction

(3a) The Backwards Induction (BI) solution.

L′

(3,3) (4,0) (-1,-1) (1,1)

Player 1 Player 1

Player 2

R′ L′′

Player 2

R′′

RL

Player 1

(2,2) (3,1)

l r r ′l ′

The BI solution is the complete strategy profile - on and off the equilibrium path:

(best responses for player 1, best responses for player 2) = (s1, s2) = (Rrr ′, R′L′′)
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Take Home Assignment 1, Ex. 3.b: Backwards induction

(3b) Player 1: Any improvement from deleting a strategy.

L′

(3,3) (-1,-1) (1,1)

Player 1 Player 1

Player 2

R′ L′′

Player 2

R′′

RL

Player 1

(2,2) (3,1)

l r ′l ′

Most of you answered that Player 1 can improve his outcome by deleting r to get 3.

This is true, but it is suboptimal (for Player 1 at least).
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Take Home Assignment 1, Ex. 3.b: Backwards induction

(3b) Player 1: The best improvement from deleting a strategy.

L′

(3,3) (4,0) (-1,-1)

Player 1 Player 1

Player 2

R′ L′′

Player 2

R′′

RL

Player 1

(2,2) (3,1)

l r l ′

Player 1 can do better by deleting r ′. Then he can use the first mover advantage to
choose the left side of the tree and use the last mover advantage to pick r and get 4.

Player 2 has limited agency in the middle stage, but picks L′ to avoid negative payoffs.
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Take Home Assignment 1, Ex. 3.c: Backwards induction

(3c) Player 2: Show there can be no improvement from deleting a strategy,

L′

(3,3) (4,0) (-1,-1) (1,1)

Player 1 Player 1

Player 2

R′ L′′

Player 2

R′′

RL

Player 1

(2,2) (3,1)

l r r ′l ′

The foolproof way: Delete L′, R′, L′′, R′′ one at the time and solve all 4 new games.

The smart way: Argue that the only possible improvement for Player 2 would be to
end up in (3, 3), but Player 1 would never choose l over r .
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PS4, Ex. 5: North-Atlantic, 1943
(MSNE)



PS4, Ex. 5: North-Atlantic, 1943 (MSNE)

North-Atlantic, 1943. An allied convoy, counting 100 ships, is heading east and it can
choose between a northern route where icebergs are known to be numerous or a more
southern route. The northern route is dangerous - because of the icebergs - and it is
estimated that 6 ships will get lost due to icebergs. Below the surface, the wolf-pack
lures. If the u-boats catch the convoy on the southern route, it is a field day, and 40
ships from the convoy are estimated to get lost. If the u-boats catch the convoy on
the northern route, they do not have as much time hunting down the convoy - due to
petrol shortages - and they are only expected to be able to sink 20 ships from the
convoy. The wolf-pack does not have time to check both locations, north and south.
Each headquarter (allied or nazi) has to decide whether to go north or south.
Unfortunately, there is no radar etc, so one cannot observe the move of the enemy
before taking a decision. Each headquarter has a simple payoff function. For the allied
headquarter it equals the number of ships making it across the Atlantic. For the nazi
headquarter payoff equals the number of ships lost by the allies.

(a) Write down this strategic situation in a bi-matrix.
(b) Find the Nash Equilibrium (equilibria?)
(c) In equilibrium, what is the expected number of ships that make it across the

Atlantic?
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PS4, Ex. 5.a: North-Atlantic, 1943 (MSNE)

North-Atlantic, 1943. An allied convoy, counting 100 ships, is heading east and it can
choose between a northern route where icebergs are known to be numerous or a more
southern route. The northern route is dangerous - because of the icebergs - and it is
estimated that 6 ships will get lost due to icebergs. Below the surface, the wolf-pack
lures. If the u-boats catch the convoy on the southern route, it is a field day, and 40
ships from the convoy are estimated to get lost. If the u-boats catch the convoy on
the northern route, they do not have as much time hunting down the convoy - due to
petrol shortages - and they are only expected to be able to sink 20 ships from the
convoy. The wolf-pack does not have time to check both locations, north and south.
Each headquarter (allied or nazi) has to decide whether to go north or south.
Unfortunately, there is no radar etc, so one cannot observe the move of the enemy
before taking a decision. Each headquarter has a simple payoff function. For the allied
headquarter it equals the number of ships making it across the Atlantic. For the nazi
headquarter payoff equals the number of ships lost by the allies.

(a) Write down this strategic situation in a bi-matrix.

Let the chance of the nazis going north be noted by q, and the chance they go south
be noted by 1-q. The chance the Allied go north is then noted by p, and the chance
they go south is noted by 1-p.
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PS4, Ex. 5.a: North-Atlantic, 1943 (MSNE)

North-Atlantic, 1943. An allied convoy, counting 100 ships, is heading east and it can
choose between a northern route where icebergs are known to be numerous or a more
southern route. The northern route is dangerous - because of the icebergs - and it is
estimated that 6 ships will get lost due to icebergs. Below the surface, the wolf-pack
lures. If the u-boats catch the convoy on the southern route, it is a field day, and 40
ships from the convoy are estimated to get lost. If the u-boats catch the convoy on
the northern route, they do not have as much time hunting down the convoy - due to
petrol shortages - and they are only expected to be able to sink 20 ships from the
convoy. The wolf-pack does not have time to check both locations, north and south.
Each headquarter (allied or nazi) has to decide whether to go north or south.
Unfortunately, there is no radar etc, so one cannot observe the move of the enemy
before taking a decision. Each headquarter has a simple payoff function. For the allied
headquarter it equals the number of ships making it across the Atlantic. For the nazi
headquarter payoff equals the number of ships lost by the allies.

(a) Write down this strategic situation in a bi-matrix:
Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

(b) Find the Nash Equilibrium (equilibria?)
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PS4, Ex. 5.b: North-Atlantic, 1943 (MSNE)

(a) Write down this strategic situation in a bi-matrix:
Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

(b) Find the Nash Equilibrium (equilibria?):

It’s a zero-sum (100-sum) type game like matching-pennies or rock-paper-scissors.
Thus, no pure strategy NE (PSNE), but a mixed strategy NE (MSNE) must exist.

Find q such that the Allied are indifferent.
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PS4, Ex. 5.b: North-Atlantic, 1943 (MSNE)

(a) Write down this strategic situation in a bi-matrix:
It’s a zero-sum (100-sum) type game:

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

(b) Find the Nash Equilibrium (equilibria?): There are no PSNE, find the MSNE:

The Allied are indifferent for:

E [uA|North] = E [uA|South]

74q + 94(1− q) = 100q + 60(1− q)⇔ ...⇔ q = 17
30

Find p such that the Nazis are indifferent.

79



PS4, Ex. 5.b: North-Atlantic, 1943 (MSNE)

(a) Write down this strategic situation in a bi-matrix:
It’s a zero-sum (100-sum) type game:

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

(b) Find the Nash Equilibrium (equilibria?): There are no PSNE, find the MSNE:

The Allied are indifferent for:

E [uA|North] = E [uA|South]

74q + 94(1− q) = 100q + 60(1− q)⇔ ...⇔ q = 17
30

The Nazis are indifferent for:

E [uN |North] = E [uN |South]

26p = 6p + 40(1− p)⇔ ...⇔ p = 2
3

Write up all Nash Equilibria, (p∗, q∗).
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PS4, Ex. 5.b: North-Atlantic, 1943 (MSNE)

(a) Write down this strategic situation in a bi-matrix:
It’s a zero-sum (100-sum) type game:

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

(b) Find the Nash Equilibrium (equilibria?): There are no PSNE, find the MSNE:

The Allied are indifferent for:

E [uA|North] = E [uA|South]

74q + 94(1− q) = 100q + 60(1− q)⇔ ...⇔ q = 17
30

The Nazis are indifferent for:

E [uN |North] = E [uN |South]

26p = 6p + 40(1− p)⇔ ...⇔ p = 2
3

The unique NE is:

NE = (p∗, q∗) =
(2

3
,

17
30

)
(c) In equilibrium, what is the expected number of ships that make it across the

Atlantic? 81



PS4, Ex. 5.c: North-Atlantic, 1943 (MSNE)

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

NE = (p∗, q∗) =
(2

3
,

17
30

)
(c) In equilibrium, what is the expected number of ships that make it across the

Atlantic?

First, write up the Allied’s expected utility of playing North and South respectively.
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PS4, Ex. 5.c: North-Atlantic, 1943 (MSNE)

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

NE = (p∗, q∗) =
(2

3
,

17
30

)
(c) In equilibrium, what is the expected number of ships that make it across the

Atlantic?

In general, the Allied’s expected utility of playing North and South respectively:

E [uA|North] = 74q + 94(1− q) = 94− 20q

E [uA|South] = 100q + 60(1− q) = 60 + 40q

Then write up the Allied’s expected utility in the equilibrium: E [uA|p∗, q∗].
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PS4, Ex. 5.c: North-Atlantic, 1943 (MSNE)

Nazis

Al
lie

d North (q) South (1-q)
North (p) 74, 26 94, 6
South (1-p) 100, 0 60, 40

NE = (p∗, q∗) =
(2

3
,

17
30

)
(c) In equilibrium, what is the expected number of ships that make it across the

Atlantic?

In general, the Allied’s expected utility of playing North and South respectively:

E [uA|North] = 74q + 94(1− q) = 94− 20q (1)
E [uA|South] = 100q + 60(1− q) = 60 + 40q (2)

In equilibrium, the Allied’s expected utility:

E [uA|p∗, q∗] = p∗E [uA|North] + (1− p∗)E [uA|South]
= p∗(94− 20q∗) + (1− p∗)(60 + 40q∗), using eq. (1) and (2)

= 2
3

(
94− 20 17

30

)
+ 1

3

(
60 + 40 17

30

)
≈ 73.48
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PS4, Ex. 6: Stopping the bike thief
(MSNE)



PS4, Ex. 6: Stopping the bike thief (MSNE)

As in Problem Set 2, there are N ≥ 2
people observing someone trying to steal
a parked bike. Each of the witnesses
would like the thief to be stopped, but
prefers not to do it him/herself (because
it is unpleasant and perhaps even
dangerous). More precisely, if the thief is
stopped by someone else, each of the
witnesses gets a utility of v > 0. Every
person who stops the thief gets a utility
of v − c > 0, where c is the cost of
interaction with the thief. Finally, if
nobody stops the thief and the bike gets
stolen, every witness gets a utility of 0.
The witnesses decide whether or not to
stop the thief simultaneously and
independently.

a) Solve for a symmetric mixed strategy
equilibrium of this game, where each
witness stops the thief with
probability p ∈ (0, 1).

b) Discuss what happens to p as the
number of witness becomes very
large. What happens then to the
probability that the thief will get
stopped? What is the intuition for
this result?
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PS4, Ex. 6.a: Stopping the bike thief (MSNE)

Payoffs for player i 6= j:

ui (si , sj ) =

{
v > 0 if i does nothing and j stops the thief

v − c > 0 if i stops the thief
0 if nobody stops the thief

a) Solve for a symmetric mixed strategy equilibrium of this game, where each
witness stops the thief with probability p ∈ (0, 1).

Taking advantage of symmetry, find the probability p such that person i is
indifferent between stopping the thief or not. That is, her expected payoff from
stopping the thief equals her expected payoff from someone else stopping the thief.
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PS4, Ex. 6.a: Stopping the bike thief (MSNE)

Payoffs for player i 6= j:

ui (si , sj ) =

{
v > 0 if i does nothing and j stops the thief

v − c > 0 if i stops the thief
0 if nobody stops the thief

a) Solve for a symmetric mixed strategy equilibrium of this game, where each
witness stops the thief with probability p ∈ (0, 1).

Person i is indifferent between stopping the thief or not when her expected payoff from
stopping the thief equals her expected payoff from someone else stopping the thief:

E [ui |i stops thief] = Prob[j stops thief]× E [ui |j stops thief], i 6= j ∈ J = 1, ..., 1− N

E [ui |i stops thief] = (1− Prob[nobody in J stops thief])× E [ui |j stops thief]
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PS4, Ex. 6.a: Stopping the bike thief (MSNE)

Payoffs for player i 6= j:

ui (si , sj ) =

{
v > 0 if i does nothing and j stops the thief

v − c > 0 if i stops the thief
0 if nobody stops the thief

a) Solve for a symmetric mixed strategy equilibrium of this game, where each
witness stops the thief with probability p ∈ (0, 1).

Person i is indifferent between stopping the thief or not when her expected payoff from
stopping the thief equals her expected payoff from someone else stopping the thief:

E [ui |i stops thief] = Prob[j stops thief]× E [ui |j stops thief], i 6= j ∈ J = 1, ..., 1− N

E [ui |i stops thief] = (1− Prob[nobody in J stops thief])× E [ui |j stops thief]

v − c =
(

1− (1− p)N−1)× v
c
v

= (1− p)N−1

p∗ = 1−
( c

v

) 1
N−1

, 0 <
c
v

< 1

Is there a mixed strategy NE?
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PS4, Ex. 6.a: Stopping the bike thief (MSNE)

Payoffs for player i 6= j:

ui (si , sj ) =

{
v > 0 if i does nothing and j stops the thief

v − c > 0 if i stops the thief
0 if nobody stops the thief

a) Solve for a symmetric mixed strategy equilibrium of this game, where each
witness stops the thief with probability p ∈ (0, 1).

Person i is indifferent between stopping the thief or not when her expected payoff from
stopping the thief equals her expected payoff from someone else stopping the thief:

E [ui |i stops thief] = Prob[j stops thief]× E [ui |j stops thief], i 6= j ∈ J = 1, ..., 1− N

E [ui |i stops thief] = (1− Prob[nobody in J stops thief])× E [ui |j stops thief]

v − c =
(

1− (1− p)N−1)× v
c
v

= (1− p)N−1 (3)

p∗ = 1−
( c

v

) 1
N−1

, 0 <
c
v

< 1

The MSNE is where each persons stops the thief with probability p∗ = 1−
(

c
v

) 1
N−1
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PS4, Ex. 6.b: Stopping the bike thief (MSNE)

The MSNE is where each persons stops the thief with probability p∗ = 1−
(

c
v

) 1
N−1

b) Discuss what happens to p as the number of witness becomes very large. What
happens then to the probability that the thief will get stopped? What is the
intuition for this result?

Calculate the probability that the thief is stopped.
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PS4, Ex. 6.b: Stopping the bike thief (MSNE)

The MSNE is where each persons stops the thief with probability p∗ = 1−
(

c
v

) 1
N−1

b) Discuss what happens to p as the number of witness becomes very large. What
happens then to the probability that the thief will get stopped? What is the
intuition for this result?

Calculate the probability that the thief is stopped.

Prob[the thief is stopped] = 1− Prob[nobody stops the thief]
...
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PS4, Ex. 6.b: Stopping the bike thief (MSNE)

The MSNE is where each persons stops the thief with probability p∗ = 1−
(

c
v

) 1
N−1

b) Discuss what happens to p as the number of witness becomes very large. What
happens then to the probability that the thief will get stopped? What is the
intuition for this result?

Prob[the thief is stopped] = 1− Prob[nobody stops the thief]
= 1− (1− p∗)N

= 1− (1− p∗)N−1(1− p∗)

= 1− c
v

(1− p∗), inserting eq. (3) from 6.a

= 1− c
v

(
1− 1 +

( c
v

) 1
N−1
)

, inserting the MSNE

= 1− c
v

(
1+ 1

N−1

)
When N → ∞, what happens to the probability of the thief being caught?
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PS4, Ex. 6.b: Stopping the bike thief (MSNE)

The MSNE is where each persons stops the thief with probability p∗ = 1−
(

c
v

) 1
N−1

b) Discuss what happens to p as the number of witness becomes very large. What
happens then to the probability that the thief will get stopped? What is the
intuition for this result?

Prob[the thief is stopped] = 1− Prob[nobody stops the thief]
= 1− (1− p∗)N

= 1− (1− p∗)N−1(1− p∗)

= 1− c
v

(1− p∗), inserting eq. (3) from 6.a

= 1− c
v

(
1− 1 +

( c
v

) 1
N−1
)

, inserting the MSNE

= 1− c
v

(
1+ 1

N−1

)
−−−−→
N→∞

1− c
v

When N →∞, the probability of the thief being caught decreases due to an increase
in the incentive to freeride. Remember: there’s a cost to stopping the thief yourself:

E [ui |p∗] = v · Prob[the thief is stopped]− c · p∗

= v ·
(

1− (1− p∗)N
)
− c · p∗

= v − c
(

1+ 1
N−1

)
− c +

(
c2

v

) 1
N−1
−−−−→
N→∞

v − 2c + 1 93



PS4, Ex. 7: To keep or split
(backwards induction)



PS4, Ex. 7: To keep or split (backwards induction)

Consider the following 2 × 2 game where
payoffs are monetary:

L R
T 3, 3 0, 4
B 4, 0 1, 1

Before this game is played, Player 1 can
choose whether, after the game is played,
players should keep their own payoffs or
split the aggregate payoff evenly between
them.

(a) Draw the game tree of this
two-stage game (assuming that
Players 1’s choice of whether to split
payoffs is revealed to Player 2 before
the second stage).

(b) Solve by backwards induction.
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PS4, Ex. 7.a: To keep or split (backwards induction)

(a) Draw the game tree:

L R
T 3, 3 0, 4
B 4, 0 1, 1

2nd stage: The above is the static game
for a keep game, find the static game for
a split game and draw the full game tree.
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PS4, Ex. 7.a: To keep or split (backwards induction)

(a) Draw the game tree:

1st stage: Player 1 chooses Keep or Split.
Player 2 observes the choice.

2nd stage: They play the static game and
payoffs are realized.

Player 1

Keep Split

L R
T 3, 3 0, 4
B 4, 0 1, 1

L’ R’
T’ 3, 3 2, 2
B’ 2, 2 1, 1

(b) Solve by backwards induction:
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PS4, Ex. 7.b: To keep or split (backwards induction)

(a) Draw the game tree:

1st stage: Player 1 chooses Keep or Split.
Player 2 observes the choice.

2nd stage: They play the static game and
payoffs are realized.

Player 1

Keep Split

L R
T 3, 3 0, 4
B 4, 0 1, 1

L’ R’
T’ 3, 3 2, 2
B’ 2, 2 1, 1

(b) Solve by backwards induction:

2nd stage: Each bi-matrix has a unique
NE that can be founds using IESDS.

1st stage: Player 1’s choice can be
reduced to choosing between the
subgame NE in each bi-matrix:

Player 1

Keep

(1,1) (3,3)

Split

BI gives the subgame perfect NE:

SPNE = (Split B T ′, R L′)
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PS4, Ex. 7: To keep or split (backwards induction)

Alternatively, draw the game tree in extensive form to find SPNE : (Split B T ′, R L′)

1st stage: Player 1 chooses Keep or Split. Player 2 observes the choice.

2nd stage: Player 2 chooses L or R (L′ or R′). The action is private information.

3rd stage: Player 1 chooses T or B (T ′ or B′) without knowing what Player 2 did.

L

(3,3) (4,0) (0,4) (1,1)

Player 1 Player 1

Player 2

R L′

Player 2

R′

SplitKeep

Player 1

T B BT

(3,3) (2,2) (2,2) (1,1)

Player 1 Player 1

T ′ B′ B′T ′

The order of stage 2 and 3 is arbitrary, but the 2nd stage must be private information.
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PS4, Ex. 8: Building a playground
(Stackelberg game)



PS4, Ex. 8: Building a playground (Stackelberg game)

Two neighbors are building a common
playground for their children. The time
spent on the project by neighbor i is
xi ≥ 0, i = 1, 2. The resulting quality of
the playground is

q(x1, x2) = x1 + x2 − x1x2

Spending time on the project is costly.
More precisely, the cost function of the
neighbors are:

Ci (xi ) = x2
i , i = 1, 2

The payoff of neighbor i , Ui , is equal to
the quality of the playground minus his
cost.

(a) Suppose the neighbors decide how
much time to spend on the project
simultaneously and independently.
Derive the best response functions.
Find the Nash equilibrium of this
game.

(b) Suppose now that the game is played
in two stages. First, neighbor 1
decides how much time to spend on
the project. Neighbor 2 observes this
and then chooses how much time to
put in himself. Find the backwards
induction outcome of this game.

(c) Compare the games from (a) and
(b) with respect to the payoff that
each neighbor obtains. Give an
intuitive explanation of your results.
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PS4, Ex. 8.a: Building a playground (Stackelberg game)

(a) Suppose the neighbors decide how much time to spend on the project
simultaneously and independently. Derive the best response functions. Find the
Nash equilibrium of this game.

(Step 1) Write up the payoff function Information so far

1 Quality: q(x1, x2) = x1 + x2 − x1x2

2 Cost: Ci (xi ) = x2
i , i = 1, 2

3 Payoff: Quality-Cost
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PS4, Ex. 8.a: Building a playground (Stackelberg game)

(a) Suppose the neighbors decide how much time to spend on the project
simultaneously and independently. Derive the best response functions. Find the
Nash equilibrium of this game.

(Step 1) Write up the payoff function
(Step 2) Write up the FOC and find the best

response function

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 Payoff : Ui =
x1 + x2 − x1x2 − x2

i i = 1, 2
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PS4, Ex. 8.a: Building a playground (Stackelberg game)

(a) Suppose the neighbors decide how much time to spend on the project
simultaneously and independently. Derive the best response functions. Find the
Nash equilibrium of this game.

(Step 1) Write up the payoff function
(Step 2) Write up the FOC and find the best

response function
(Step 3) This is a symmetric game, so the BR

are the same for both players, use
this to find the NE by substituting
(6) into (5) and isolating x1

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 Payoff : Ui =
x1 + x2 − x1x2 − x2

i i = 1, 2
4 FOC : 1− xj − 2xi = 0
5 BR1 : x1 = (1− x2)/2
6 BR2 : x2 = (1− x1)/2
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PS4, Ex. 8.a: Building a playground (Stackelberg game)

(a) Suppose the neighbors decide how much time to spend on the project
simultaneously and independently. Derive the best response functions. Find the
Nash equilibrium of this game.

(Step 1) Write up the payoff function
(Step 2) Write up the FOC and find the best

response function
(Step 3) This is a symmetric game, so the BR

are the same for both players, use
this to find the NE by substituting
(6) into (5) and isolating x1

(NE) x1 = (1− (1− x1)/2)/2⇒ x1 = 1
3

x2 = (1− (1− x2)/2)/2⇒ x2 = 1
3

NE : ( 1
3 , 1

3 )

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 Payoff : Ui =
x1 + x2 − x1x2 − x2

i i = 1, 2
4 FOC : 1− xj − 2xi = 0
5 BR1 : x1 = (1− x2)/2
6 BR2 : x2 = (1− x1)/2
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PS4, Ex. 8.b: Building a playground (Stackelberg game)

(b) Suppose now that the game is played in two stages. First, neighbor 1 decides how
much time to spend on the project. Neighbor 2 observes this and then chooses
how much time to put in himself. Find the backwards induction outcome of this
game.

(Step 1) Write up the new payoff function for
player one, where he takes player 2s
best response as given. In order
words, write his payoff as a function
of x1 and BR2(x1)

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 U1(x1, x2) = x1 + x2 − x1x2 − x2
1

4 BR2 : x2 = (1− x1)/2
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PS4, Ex. 8.b: Building a playground (Stackelberg game)

(b) Suppose now that the game is played in two stages. First, neighbor 1 decides how
much time to spend on the project. Neighbor 2 observes this and then chooses
how much time to put in himself. Find the backwards induction outcome of this
game.

(Step 1) Write up the new payoff function for
player one, where he takes player 2s
best response as given. In order
words, write his payoff as a function
of x1 and BR2(x1)

(Step 2) Write up the FOC and find the best
response function for player 1, as a
function of x1 and BR2(x1)

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 U1(x1, x2) = x1 + x2 − x1x2 − x2
1

4 BR2 : x2 = (1− x1)/2
5 U1(x1, BR2(x1)) :

x1 + (1− x1)/2− x1(1− x1)/2− x2
1
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PS4, Ex. 8.b: Building a playground (Stackelberg game)

(b) Suppose now that the game is played in two stages. First, neighbor 1 decides how
much time to spend on the project. Neighbor 2 observes this and then chooses
how much time to put in himself. Find the backwards induction outcome of this
game.

(Step 1) Write up the new payoff function for
player one, where he takes player 2s
best response as given. In order
words, write his payoff as a function
of x1 and BR2(x1)

(Step 2) Write up the FOC and find the best
response function for player 1, as a
function of x1 and BR2(x1)

(Step 3) Use the value for x1 to find x2 and
write up the SPNE

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 U1(x1, x2) = x1 + x2 − x1x2 − x2
1

4 BR2 : x2 = (1− x1)/2
5 U1(x1, BR2(x1)) :

x1 + (1− x1)/2− x1(1− x1)/2− x2
1

6 FOC1 : 1− 1
2 −

1
2 − x1 = 0

7 BR1 : x1 = 0
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PS4, Ex. 8.b: Building a playground (Stackelberg game)

(b) Suppose now that the game is played in two stages. First, neighbor 1 decides how
much time to spend on the project. Neighbor 2 observes this and then chooses
how much time to put in himself. Find the backwards induction outcome of this
game.

(Step 1) Write up the new payoff function for
player one, where he takes player 2s
best response as given. In other
words, write his payoff as a function
of x1 and BR2(x1)

(Step 2) Write up the FOC and find the best
response function for player 1, as a
function of x1 and BR2(x1)

(Step 3) Use the value for x1 to find x2 and
write up the SPNE

(SPNE) x1 = 0 x2 = (1− 0)/2⇒ x2 = 1
2

SPNE : (0, 1
2 )

Information so far

1 Quality : q(x1, x2) = x1 + x2 − x1x2

2 Cost : Ci (xi ) = x2
i , i = 1, 2

3 U1(x1, x2) = x1 + x2 − x1x2 − x2
1

4 BR2 : x2 = (1− x1)/2
5 U1(x1, BR2(x1)) :

x1 + (1− x1)/2− x1(1− x1)/2− x2
1

6 FOC1 : 1− 1
2 −

1
2 − x1 = 0

7 BR1 : x1 = 0
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PS4, Ex. 8.c: Building a playground (Stackelberg game)

(c) Compare the games from (a) and (b) with respect to the payoff that each
neighbor obtains. Give an intuitive explanation of your results.

(Step 1) What are the payoffs for each player
in the two games? What is the total
utility?

Information so far

G1 NE =
( 1

3 , 1
3
)

G2 SPNE =
(

0, 1
2
)

Utility Ui = x1 + x2 − x1x2 − x2
i , i = 1, 2
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PS4, Ex. 8.c: Building a playground (Stackelberg game)

(c) Compare the games from (a) and (b) with respect to the payoff that each
neighbor obtains. Give an intuitive explanation of your results.

(Step 1) What are the payoffs for each player
in the two games? What is the total
utility?

(Step 2) Compare and explain.
(Bonus) If bargaining is possible, does a

pareto improvement exist to the
outcome in the 2nd game?

Information so far

G1 NE =
( 1

3 , 1
3
)

G2 SPNE =
(

0, 1
2
)

Utility Ui = x1 + x2 − x1x2 − x2
i , i = 1, 2

G1 U1 = 1
3 + 1

3 −
1
3

2 − 1
3

2 = 4
9

G1 U2 = 1
3 + 1

3 −
1
3

2 − 1
3

2 = 4
9

G1 UT = 4
9 + 4

9 = 8
9

G2 U′1 = 0 + 1
2 − 0 · 1

2 − 02 = 1
2

G2 U′2 = 0 + 1
3 − 0 · 1

2 −
1
2

2 = 1
4

G2 U′T = 1
2 + 1

4 = 3
4
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PS4, Ex. 8.c: Building a playground (Stackelberg game)

(c) Compare the games from (a) and (b) with respect to the payoff that each
neighbor obtains. Give an intuitive explanation of your results.

(Player 1) Gets a higher payoff when he gets to
choose first (first mover advantage).
He chooses to freeride, relying on
Player 2 to pick up the slack.

(Player 2) Gets a lower payoff when she
chooses second. Even though Player
1 freerides, it is still optimal for her
to pick up some of the slack.

(Total U) Overall utility is lower in the 2nd

game. With bargaining, P2 could
offer P1 compensation in order to
remove the freeride opportunity.
E.g. In game 2, if P2 could offer P1
1/9 in order for them to choose at
the same time instead. P1 would
accept the offer and get the payoff
5/9 > 1/2 and P2 would transfer
1/9 and be left with 3/9 > 1/4.

Information so far

G1 NE =
( 1

3 , 1
3
)

G2 SPNE =
(

0, 1
2
)

Utility Ui = x1 + x2 − x1x2 − x2
i , i = 1, 2

G1 U1 = 1
3 + 1

3 −
1
3

2 − 1
3

2 = 4
9

G1 U2 = 1
3 + 1

3 −
1
3

2 − 1
3

2 = 4
9

G1 UT = 4
9 + 4

9 = 8
9

G2 U′1 = 0 + 1
2 − 0 · 1

2 − 02 = 1
2

G2 U′2 = 0 + 1
3 − 0 · 1

2 −
1
2

2 = 1
4

G2 U′T = 1
2 + 1

4 = 3
4

→ The Coase Theorem (Coase, 1960).
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